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Abstract
Coral bleaching caused by climate change has resulted in large-scale coral reef decline worldwide. However, the knowl-
edge of physiological response mechanisms of scleractinian corals under high-temperature stress is still challenging. Here, 
untargeted mass spectrometry–based metabolomics combining with Global Natural Product Social Molecular Networking 
(GNPS) was utilized to investigate the physiological response of the coral species Pavona decussata under thermal stress. A 
wide variety of metabolites (including lipids, fatty acids, amino acids, peptides, osmolytes) were identified as the potential 
biomarkers and subjected to metabolic pathway enrichment analysis. We discovered that, in the thermal-stressed P. decus-
sata coral holobiont, (1) numerous metabolites in classes of lipids and amino acids significantly decreased, indicating an 
enhanced lipid hydrolysis and aminolysis that contributed to up-regulation in gluconeogenesis to meet energy demand for 
basic survival; (2) pantothenate and panthenol, two essential intermediates in tricarboxylic acid (TCA) cycle, were up-
regulated, implying enhanced efficiency in energy production; (3) small peptides (e.g., Glu-Leu and Glu-Glu-Glu-Glu) and 
lyso-platelet-activating factor (lysoPAF) possibly implicated a strengthened coral immune response; (4) the down-regulation 
of betaine and trimethylamine N-oxide (TMAO), known as osmolyte compounds for maintaining holobiont homeostasis, 
might be the result of disruption of coral holobiont.
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Introduction

Coral reefs, as one crucial marine ecosystem, possess high 
productivity and species diversity. They provide essential 
services, such as fisheries habitat, tourism, and coastal pro-
tection, to millions of people worldwide. In the past decades, 
coral reef ecosystems have faced an unprecedented threat 
imposed by global climate change [1, 2]. Global warming 

has caused extensive coral bleaching [3, 4], which can fur-
ther lead to coral mortality and the destruction of the struc-
ture and function of the coral reef ecosystem [4, 5]. Coral 
bleaching is the result of dysfunction of the symbiotic rela-
tionship and expulsion of the symbiont from a coral host. 
With the occurrence of bleaching, the normal bi-directional 
exchange of metabolites between the coral host and Sym-
biodiniaceae is destroyed. However, the knowledge of the 
physiological response mechanisms of coral holobiont dur-
ing high-temperature stress is limited.

Recent advances in the omics fields [6, 7] (genomics, 
transcriptomics, proteomics, and metabolomics) have pro-
vided new knowledge about the biological mechanisms 
implicated in coral response to thermal stress. Metabo-
lomics focuses on the end products of cellular regulatory 
processes that link genotype, phenotype, and the environ-
ment, and it can amplify the small differences in gene 
variation or protein expression. Intracellular metabolite 
pools play crucial roles in cellular homeostasis, includ-
ing antioxidation [8], signal transduction [9], and energy 

 * Ke-Fu Yu 
 kefuyu@scsio.ac.cn

1 Coral Reef Research Center of China, Guangxi Laboratory 
On the Study of Coral Reefs in the South China Sea, 
School of Marine Sciences, Guangxi University, Nanning, 
Guangxi 530000, People’s Republic of China

2 Department of Chemistry, National Taiwan University, 
Taipei 10617, Taiwan

3 Southern Marine Science and Engineering 
Guangdong Laboratory, Zhuhai, Guangdong 519080, 
People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00216-022-04294-y&domain=pdf


 Pei J.-Y. et al.

1 3

generation [10] as well as the synthesis of complex sec-
ondary compounds through primary metabolites [11]. 
Confronting environmental stress, the metabolites might 
be adjusted to minimize the injury. For example, betaines, 
as compatible solutes, can stabilize membrane structure 
to protect photosynthesis of Symbiodiniaceae from high 
irradiance or unusual temperature stress [12, 13]. As a 
result, the study of metabolic networks in complex systems 
serves as a reliable tool for elaborating cellular response to 
environmental stress. However, few studies [14–20] have 
applied metabolomics to explore the underlying molec-
ular mechanism of coral response to high-temperature 
stress. By the paired metabolome analysis of historically 
unbleaching and bleaching (but recovered) Montipora 
capitata, betaine lipids were found to be the strongest 
metabolite drivers for differentiating historical bleaching 
phenotype, providing a new tool for screening heat-resist-
ant coral [18]. Microorganisms are vital components of 
coral holobiont, and the virulence of some pathogens, such 
as Vibrio coralliilyticus, boosted with rising temperature. 
Nuclear magnetic resonance (NMR)–based metabolomics 
has revealed that the adjustment of the metabolic pathways 
of the pathogen played a role in the enhanced pathogenic-
ity when the environmental temperature was elevated [21].

Recently, mass spectrometry–based metabolomics 
approaches have enabled the exploration of the chemotype of 
various complex biological systems [14]. Here, an untargeted 
mass spectrometry–based metabolomics approach combined 
with Global Natural Product Social Molecular Networking 
(GNPS) [22, 23] was used to explore the molecular regula-
tory mechanisms of reef-building corals in response to high-
temperature stress. Considering that the dominant species 
of corals have shifted to bleaching-tolerant coral worldwide 
[24–26], and high latitude may serve as a potential refuge for 
corals under global warming [26], in this study, the bleach-
ing-tolerant coral Pavona decussata collected from Weizhou 
island located in a relatively high latitude area in the north-
western South China Sea (SCS) was used as the model coral 
to investigate the molecular adaptive mechanism of stress-
hardened corals under future global warming. After cultivat-
ing the heat-stressed P. decussata in an artificial aquarium, 
a liquid chromatography–mass spectrometry (LC–MS) was 
utilized to characterize their metabolites associating with 
physiological changes. Then, GNPS was used to deduce 
unknown metabolites based on annotated compounds. The 
possible biochemical mechanisms involved in the potential 
biomarkers of lipid, peptide, and small-molecule metabolites 
were demonstrated. This study provides an insight into the 
molecular mechanism underlying the response of P. decus-
sata to thermal stress, laying the foundation for conservation 
and restoration of the coral reef ecosystem in the content of 
global climate warming.

Materials and method

Collection and cultivation of coral nubbins

The coral P. decussata with a size of four square decime-
ters was sampled from Weizhou island (N21°07′, E109°14′, 
Guangxi, China) on 20 May 2019 using a hammer and 
chisel at a depth of 9–10 m, and transported to the aquaria in 
Guangxi University in 3 h. The coral was identified based on 
its ecological and morphological characteristics. After accli-
matization to the aquarium for 30 days, a coral colony was 
fragmented into 10 pieces and glued to labelled aragonite 
plugs with epoxy adhesive. The 10 glued nubbins were then 
randomly distributed between two aquaria, and continued to 
acclimate to the ex situ conditions for 30 days. Continuous 
flow-through seawater (average flow rate of 3 L/min) was 
prepared with synthetic sea salt. The water movement in 
each aquarium was provided by small submersible pumps 
(CP-55, Zhongshan Jiebao Electronic Appliance Co., Ltd., 
Zhongshan, China). Each tank was equipped with a temper-
ature-controlled system (Water Cooler, Hailea, Model: HS-
66A, temperature detector: Caperplus C1). The light was set 
for a 12-h light–dark cycle using T5HO lights (Zhongshan 
Songbao Electronic Appliance Co., Ltd., Zhongshan, China).

The temperature programming is shown in Fig. 1a. 
After acclimation, we subjected the coral nubbins to heat 
stress with programmed temperature elevation or a con-
trolled temperature at 26 °C. The heating program was set 
as follows: increase by one degree every 12 h, and accli-
matize to 60 h when the temperature was elevated by 3 °C. 
This process was circulated till the temperature reached 
35 °C, and then the temperature was maintained at 35 °C 
for 72 h before sampling.

Daily measurements of maximum and actual quantum 
yield of photosystem II (PS II) (Fv/Fm) were taken using 
pulse amplitude modulation (PAM) fluorometry (Diving-
PAM, Walz, Effeltrich, Germany). Maximum quantum 
yields were taken after stop illuminating for 30 min for 
coral adaptation to darkness, while the real-time quan-
tum yield of PS II was measured with the light on. The 
distance between PAM fluorometry and the coral surface 
was set as 3 mm. Triplicate measurements were taken from 
each coral fragment. The PAM parameters were set as fol-
lows: measuring light, 4; saturation intensity, 4; saturation 
width, 0.6 s; gain, 1; and damping, 2 with the use of the 
measuring light burst function.

Fragment processing

The coral fragments were placed into liquid nitrogen 
instantly when taken from the aquarium, and then stored 
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in a − 80 ℃ refrigerator before subsequent treatment. Coral 
tissue from a fragment was removed by Waterpik with 
50 mL chilled ultrapure milli-Q water. The water was cir-
cularly used to flush the coral until the skeleton’s tissues 
were completely peeled off. One mL tissue suspension was 
used for Symbiodiniaceae cell counts, and the other 49 mL 
was lyophilized to dry powder for metabolite extraction.

Measurement of Symbiodiniaceae cell density

Symbiodiniaceae cell densities were quantified from 1 mL 
aliquots of tissue suspensions using improved Neubauer 
hemocytometer counts (Boeco, Germany) with six repli-
cate measurements. Cell density was normalized to coral 
fragment surface area, measured with the tinfoil-wrapping 
method [27, 28].

Metabolite extraction from coral nubbins

Metabolites were extracted from dried coral tissue pow-
der using ultrasonic extraction and vortexing (Figure S1). 
Briefly, 0.5 mL of ice-cold methanol/water (v/v, 7:3) con-
taining an internal standard (caffeine-D9, 2 μg/mL) was 
added to a pre-weighed coral tissue powder (10 mg) in a 
2 mL sample tube. After alternating ultrasonication and vor-
texing for 3 min, samples were centrifuged at 12,000 × g for 
3 min at 4 °C. The supernatant was collected and temporar-
ily stored on dry ice. This procedure was performed thrice to 

ensure the complete extraction of the metabolites. The com-
bined extract was filtered through a 0.22-μm nylon syringe 
filter and stored at − 80 °C until LC–MS/MS analysis.

Mass spectrometry data collection 
and pre‑processing

Coral metabolite extracts were analyzed on a Thermo™ 
Q-Exactive™ mass spectrometer coupled to a Dionex Ulti-
Mate 3000 UHPLC system. The mobile phase A and B were 
 H2O with 0.1% formic acid and methanol with 0.1% formic 
acid, respectively. The chromatographic separation was per-
formed using ACQUITY CSH  C18 column (2.1 × 100 mm; 
1.7 μm; Waters, MA, USA) with a flow rate of 200 μL/
min at 30 °C using the following gradients: 0–3 min, 5% 
B; 3–20 min, 5–95% B. Ninety-five percent B was held for 
5 min followed by a switch to 5% B in 1 min, and then 
maintained for 4 min to reach system stability before next 
injection. The injection volume of each sample was 2 µL. 
Data was collected in positive electrospray ionization mode 
with the data-dependent acquisition (DDA). A DDA method 
was performed by scanning a full MS from m/z 100 to 1000 
and collecting MS/MS spectra of the top 10 most intense 
compounds.

Raw files (.raw) were converted to.mzXML format, and 
analyzed using open-source MZmine software (v2.51) to 
extract chromatographic features. Feature extraction for 
full MS and MS/MS spectra was performed with an exact 
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Fig. 1  a The programmed temperature in the coral aquarium. Arrows 
represent the sampling time. b Effects of temperature on coral mor-
phology. c Maximum and d actual quantum yield of PSII of corals. 

*p < 0.05, **p < 0.01, ***p < 0.001. e Comparison of Symbiodini-
aceae density between corals at 26 °C and 35 °C (72 h).
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mass detector with a signal threshold of 70,000 and 10,000 
respectively. The chromatogram building was achieved using 
a minimum height of 70,000, and m/z tolerance of 0.001 (or 
5 parts per million (ppm)). Chromatograms were deconvo-
luted by the local minimum algorithm with a peak duration 
range of 0.07 to 1.20 min, and a minimum absolute height of 
70,000. Isotopic peaks were grouped with an m/z tolerance 
of 0.003 Da (or 12 ppm), and a retention time tolerance of 
0.05 min. Detected peaks were aligned through Join Aligner 
Module with m/z tolerance of 0.02 Da, and retention time 
tolerance of 0.02 min. The resulting peak list was gap filled 
with intensity tolerance of 5%, m/z tolerance of 0.001 Da 
(or 5 ppm), and retention time tolerance of 0.15 min. The 
signal intensities of all metabolites were normalized by the 
signal intensity of caffeine-D9. A complete description of 
instrument and software parameters is provided in Table S1.

Molecular network analysis

A.mgf-formatted file and a feature quantification table 
exported from MZmine software were uploaded to the 
GNPS website for running feature-based molecular network-
ing (FBMN) workflow. FBMN was performed with a parent 
and fragment mass ion tolerance of 0.02 Da, a cosine score 
of 0.7, a minimum matched peaks of 2, library search mini-
mum matched peaks of 2, a library search score threshold of 
0.7, and a minimum peak intensity of 20,000. Feature-based 
molecular networking job is available at: https:// gnps. ucsd. 
edu/ Prote oSAFe/ status. jsp? task= 787a1 543ac e64f2 586e1 
9c16e c3056 55.

The FBMN output files were visualized using Cytoscape 
(v3.8.0). In total, 147 compounds were annotated by GNPS 
library search. With the annotated compounds as “seeds,” we 
could infer adjacent unknown nodes according to the MS/
MS spectra. To seek more “seeds” in the molecular network, 
metabolite identification was also performed by Compound 
Discoverer 3.2 software (Thermo Fisher Scientific, USA) with 
detailed parameters provided in Table S2. This resulted in the 
identification of additional 59 compounds with the standard 
of mzCloud Best Match > 80. For annotated metabolites with 
variable importance in the projection (VIP) > 1, the MS/MS 
spectra were manually inspected to avoid false matches.

Statistical analysis

The processed data were introduced to SIMCA-P (v14.1, 
Umetrics, Umea, Sweden) for principal component analy-
sis (PCA) and partial least square discriminant analysis 
(OPLS-DA). All data were unit variance (UV) (for PCA) 
or Pareto (Par) (for OPLS-DA)-scaled before multivariate 
statistical analysis. The predictivity of sevenfold cross-
validated OPLS models was validated through 200 ran-
dom permutations of the class membership variable. The 

significance of the goodness-of-fit and goodness-of-pre-
diction were assessed by R2(cum) (explained variance) and 
Q2(cum) (predicted variance) parameters, respectively. 
When R2Y(cum) and Q2(cum) are close to 1, the model 
is considered excellent; when Q2 ≥ 0.5, the model is con-
sidered reliable. Variable Importance in the Projection 
(VIP) > 1.0 is supposed to contribute significantly to the 
separation. A two-tailed unpaired Student’s t-test was used 
for significance testing, and P values less than 0.05 were 
considered significant.

The unsaturation index (UI) for each lipid class was 
calculated using the following formula:

where y is every molecular lipid species belonging to the 
lipid class x.

Pathway enrichment analysis

The online metabolic data analysis platform Metaboana-
lyst 5.0 (https:// www. metab oanal yst. ca/) [29] was used 
for pathway enrichment analysis based on the potential 
biomarkers, and the enrichment analysis was conducted 
based on the KEGG database (https:// www. genome. jp/ 
kegg/ pathw ay. html).

Data quality control

A quality control (QC) sample was prepared by mixing 
an equal quantity of each coral tissue dry powder, and 
extracted by the same method as samples. The pooled QC 
sample was injected five times in the beginning to ensure 
system equilibrium and injected every five samples during 
LC–MS analysis to monitor system stability. The coeffi-
cient of variance (CV) of the metabolites in the QC sam-
ples was on average 7%. A blank solution, which matched 
the composition of the extraction solvent, was injected 
every three samples (before the QC detection) to assess 
background signals and ensure that there was no carryo-
ver during analysis. All known metabolites in the mixture 
were detected within 5 ppm mass accuracy.

Results

Changes in physiological phenotypes, PSII quantum 
yield, and Symbiodiniaceae density of P. decussata

Our lab-built coral aquarium served as a temperature-tunable 
apparatus to examine changes in P. decussata physiological 
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phenotypes and determine their corresponding quantum 
yield and Symbiodiniaceae density. By applying a pro-
grammed heating process to the aquarium (Fig. 1a), we suc-
cessfully induced coral bleaching as recorded in Fig. 1b. In 
the beginning, when the environment was heated from 26 to 
29 °C, most of the coral tentacles began to contract whereas 
only a small portion of the tentacles underwent extension. 
Then, the proportion of the extended tentacles decreased as 
the temperature further rose to 32 °C. Finally, the tentacles 
fully contracted in company with coral whitening when the 
temperature reached 35 °C. During the programmed heating 
process, the maximum and actual quantum yield of PSII was 
measured periodically at 26 °C, 29 °C, 32 °C, and 35 °C. 
The maximum quantum yield of PSII declined from 0.69 to 
0.60 when the temperature was elevated from 26 to 35 °C 
(60 h) (Fig. 1c). The actual quantum yield of PSII showed 
random fluctuation during 26–29 °C, and then gradually 
decreased when the temperature reached 35 °C (Fig. 1d). 
Regarding Symbiodiniaceae density, we discovered that 
the thermal stress resulted in a significant decrease from 
2.44*106 cell  cm−2 (26 °C) to 1.42*106 cell  cm−2 (35 °C, 
72 h) (p < 0.05) (Fig. 2e).

Metabolomic profiling of heat‑stressed and healthy 
coral

To reveal metabolic markers indicative of coral bleaching, 
the metabolite extracts of heat-stressed and healthy corals 
were subject to untargeted metabolomic investigation and 
multivariate data analyses. As a result, a total of 1636 unique 
metabolite features were extracted from the untargeted 
metabolomics dataset, representing the chemical diversity of 
the coral system. Multivariate data analyses were employed 
to better visualize the subtle difference in the metabolome 
between heat-stressed and healthy corals. PCA, an unsuper-
vised method, was employed to reduce the dimensionality 

of the data while retaining most of the variation (Fig. 2a), 
showing that the corals exposed to high temperature (treat-
ment group) were visibly separated from those exposed to 
26 °C (control group) (R2X(cum) = 0.550, Q2(cum) = 0.400). 
Additionally, OPLS-DA, a supervised method, was further 
applied to build another classification model. The results 
indicated that the metabolic profile of the treatment group 
deviated from that of the control group (R2Y(cum) = 0.988, 
 Q2(cum) = 0.922) (Fig. 2b). The 7-round cross-validation 
and 200 random permutation test showed good predictabil-
ity without overfitting in the OPLS-DA model (Figure S2). 
S-plots were constructed to identify metabolites that distin-
guished the bleaching corals from controls (Fig. 2c). There 
were 215 metabolite features that were initially screened out 
with the criterion of VIP > 1. These features were further 
screened by Student’s t-test, giving 170 significant metabo-
lites (p < 0.05) that were potential metabolic biomarkers to 
coral bleaching.

Metabolite identification with GNPS

In the coral metabolome, the identification of 215 signifi-
cant metabolites (VIP > 1) remained unknown. To deduce 
their structures, the metabolomic dataset was further pro-
cessed by GNPS, creating a molecular network that showed 
structural similarity between metabolites. In the molecu-
lar network, structural analogues are connected to form 
molecular clusters, and this feature strategically facilitates 
the annotation of unknown metabolites by their connected 
knowns. Here, we showed that the P. decussata molecular 
network encompassed dozens of molecular clusters (num-
ber of nodes > 2). Meanwhile, 867 metabolites were down-
regulated and 769 metabolites were up-regulated (Figure 
S3). In the metabolome, up to 206 metabolites were puta-
tively annotated by the GNPS spectral libraries and data-
bases in Compound Discoverer, and served as “seeds” for 
identifying their neighboring unknowns. In the OPLS-DA 
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model, betaine was the strongest metabolite driver which 
differentiated heat-bleaching corals from healthy ones. The 
second strongest metabolite driver was an unknown com-
pound of m/z 562.3728 (number of VIP (NVIP) = 3) con-
nected to a molecular family where the metabolite of m/z 
490.3735 was annotated as a betaine lipid: diacylglyceryl-
carboxyhydroxymethylcholine (DGCC) 16:0 (Fig. 3a). 
By aligning the MS/MS spectra, we discovered that the 
unknown metabolite m/z 562.3728 and DGCC 16:0 shared 
common fragment ions indicative of the loss of a betaine 
head group (e.g., m/z 104.1073 and m/z 132.1020). By 
inferring the desaturation degree and length of the fatty 
acyl chain from exact mass, this unknown metabolite was 
identified as DGCC 22:6. Similarly, the other biomarkers 
(VIP > 1, p < 0.05) in this molecular family were identified 

as betaine lipids (Figure S4), and they all showed lower 
abundance in heat-stressed corals (Table S3). The third 
strongest metabolite driver of differentiating heat-bleach-
ing and healthy corals was an unknown metabolite of m/z 
291.2318, connected to a large molecular family in which 
44% metabolites (29 out of 66) were potential biomarkers 
(Figure S5). In the 29 potential biomarkers, 16 of them 
were putatively annotated by the GNPS libraries as vari-
ous classes of lipids (fatty acid (FA), fatty acid amide 
(FAA), fatty acid methyl ester (FAME), and monoacylg-
lycerol (MAG)). By investigating MS/MS spectral simi-
larity between the unknown metabolites in this molecular 
family, we identified the third strongest metabolite driver 
m/z 291.2318 as FAME 18:4 (Figure S6) and the major-
ity of the other unknown metabolites as lipids of various 
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classes (FA, FAA, FAME, MAG, monogalactosylmono-
acylglycerol (MGMG), and digalactosylmonoacylglyc-
erol (DGMG)) (Figure S6–10). Most of these lipids were 
down-regulated in heat-stressed corals (Table S3). Another 
important molecular family containing signatures of phos-
phorylcholine head group in its MS/MS pattern (charac-
teristic fragment ions, m/z 86.0968, 104.1072, 184.0733) 
were identified as phosphatidylcholine (PC), plasmanyl-
choline (PC(O)), and plasmenylcholine (PC(P)) (Fig. 3b 
and Figure S11). While lysoPC(P-16:0) (m/z 480.3454, 
NVIP = 83) and lysoPC(P-18:0) (m/z 508.3767, NVIP = 203) 
were up-regulated in heat-stressed corals, on the contrary, 
lysoPC(16:0) (m/z 496.3340, NVIP = 23), lysoPC(18:0) 
(m/z 524.3711, NVIP = 59), lysoPC(O-16:0) (m/z 482.3611, 
NVIP = 8) (namely lyso-platelet-activating factor (lysoPAF) 
C-16), and lysoPC(O-18:0) (m/z 510.3924,  NVIP = 39) 
(namely lysoPAF C-18) were down-regulated (Table S3).

Furthermore, two important potential diagnostic bio-
markers with m/z 261.1445 (NVIP = 72), and m/z 535.1884 
(NVIP = 150) were identified as glutamate-leucine (Glu-Leu) 
and glutamate-glutamate-glutamate-glutamate (Glu-Glu-
Glu-Glu) with characteristic fragment ions representative 
to loss of Glu monomer (Fig. 3c). Their abundances were 
up-regulated in heat-stressed corals compared to healthy cor-
als, especially Glu-Leu whose abundance was enhanced four 
times (Table S4).

Other potential biomarkers, such as glutamine, glu-
tamate, aspartate, tryptophan, pantothenate, panthenol, 
betaine, trimethylamine N-oxide (TMAO), and inosine, 
were also identified by library search and manual interpre-
tation with the assistance of molecular networking (Figures 
S12–S13). Among these biomarkers, tryptophan, panthe-
nol, and pantothenate were up-regulated, while the others 

were down-regulated when corals faced temperature stress 
(Table S4). In clustering analysis of these 15 potential small-
molecule biomarkers, the bleaching corals were separated 
from the healthy ones (Figure S14).

For the 215 metabolites with VIP > 1, lipid, small mol-
ecules, and unknown metabolites accounted for 25.6%, 
14.9%, and 58.1%, respectively (Figure S15). Structural 
lipids (betaine lipid, PC, DGCC, MGMG, DGMG) and 
storage lipids (FA, FAA, MAG) accounted for 55.7% and 
44.3% of the total lipid biomarkers respectively. To compare 
the change of the physicochemical property of the holobi-
ont membrane, the UI based on the potential biomarkers 
of structural lipids was calculated. The results showed a 
lower UI in heat-stressed corals as compared to controls 
(Figure S16).

Metabolic pathway analysis

To characterize how coral metabolome changed in 
response to heat stress, metabolic pathway enrichment 
analysis was performed by subjecting the above-mentioned 
potential biomarkers (VIP > 1, p < 0.05) to MetaboAna-
lyst software. To obtain more robust results, lipids were 
excluded because their detailed structures (e.g., double 
bond position) were ambiguous. Additionally, Glu-Leu 
and Glu-Glu-Glu-Glu were excluded due to their absence 
in the KEGG database. Finally, 12 biomarkers were 
imported to MetaboAnalyst software for pathway enrich-
ment analysis (Table  S5), showing that 18 metabolic 
pathways (glutamine and glutamate metabolism, arginine 
biosynthesis, nitrogen metabolism, alanine, aspartate and 
glutamate metabolism, histidine metabolism, pantothen-
ate, and acetyl coenzyme A (CoA) biosynthesis to name 

Fig. 4  Metabolic pathway 
enrichment analysis of corals 
exposed to thermal stress. The 
numbers before and after the 
oblique line represent observed 
potential biomarkers and total 
metabolites in the metabolic 
pathway respectively
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a few) were perturbed when the corals responded to high-
temperature stress (Fig. 4). These metabolic pathways 
highlighted the metabolism of amino acid and cofactor. 
For example, glutamate, glutamine, and aspartate were 
enriched in amino acid metabolism, while pantothenate 
and panthenol were enriched in CoA metabolism.

The disrupted CoA metabolic pathway is depicted in 
Fig. 5. Aspartate-α-decarboxylase catalyzes the decarbox-
ylation of aspartate to generate alanine, and alanine reacts 
with pantoate to produce pantothenate. Following a series 
of reactions (phosphorylation, condensation reaction with 
cysteine, decarboxylation, and AMP transfer), pantothen-
ate is converted to CoA that subsequently participates in 
the TCA cycle. Pantothenate is also the metabolic product 
of panthenol in this pathway.

The disrupted amino acid metabolic pathway is shown in 
Figure S17. Glutamine and glutamate could be mutually con-
verted via the glutamine synthetase/glutamine:2-oxoglutarate 
aminotransferase cycle in the pathways of glutamine and glu-
tamate metabolism, nitrogen metabolism, and alanine, aspar-
tate, glutamate metabolism, histidine metabolism, and arginine 
biosynthesis. In that cycle, ammonium is added to glutamate 
(Glu) to produce glutamine (Gln); Gln is then converted back 
to Glu with either glutamate synthase or glutaminase.

Discussion

The data presented herein illustrate biochemical and meta-
bolic abnormalities of corals that are exposed to thermal 
stress. In the heat-stressed corals, the declined Symbiod-
iniaceae density and maximum and actual photochemical 
efficiency of PSII indicated photoinhibition, symbiosis 

breakdown, and coral bleaching. Generally, corals rely on 
tentacle motion to support their respiration, photosynthe-
sis, prey capture, heat exchange, and reproduction [30]. To 
reduce exposure to high-temperature stress, the tentacle of 
coral polyps contracted. Besides the physiological response 
mentioned above, the metabolic pathways of corals were 
adjusted in response to high-temperature stress.

Dysfunction of various lipid metabolic pathways 
by high‑temperature stress

The total coral lipids can be generally viewed as the combi-
nation of three types of lipids: storage lipids (such as FAME 
and MAG), structural lipids (such as DGCC and lysoPC), 
and glycolipids (such as MGMG and DGMG). In principle, 
storage lipids determine the energy balance of corals; struc-
tural lipids serve as important components of the cell mem-
brane; glycolipids are the crucial lipid of thylakoid mem-
branes of Symbiodiniaceae [31]. Traditionally, the FA 18:4, 
which mainly esterifies coral glycolipids, is considered char-
acteristic of Symbiodiniaceae. However, a recent genomic 
study of desaturate enzymes in corals has challenged the 
long-held assumption that corals cannot synthesize polyun-
saturated FA 18:4 [32]. Even though, it has been reported 
that zooxanthellate coral species have a higher content of 
FA 18:4 than azooxanthellate coral species [33], suggesting 
that the content of FA 18:4 were expected to correlate with 
the Symbiodiniaceae density in coral tissues. Based on these 
findings, the decline of MGMG, DGMG, and FA 18:4 in 
the heat-stressed coral holobiont in the present study could 
indicate the loss of Symbiodiniaceae from the coral host.

Under stress, corals allocate energy preferentially towards 
basic survival. After available ATP and stored glucose being 
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consumed, hydrolysis of storage lipid would be activated to 
compensate for energetic demands, and elevated tempera-
ture accelerated the rate of lipid depletion, which suggested 
that the basic metabolism became more energetically costly 
[34]. However, we observed that the biosynthesis of storage 
lipid by algal was dampened due to photosynthesis inhibition 
under heat stress, possibly resulting in the decrease of stor-
age lipids as similarly observed in previous studies [35, 36]. 
On the other hand, Symbiodiniaceae resides in the endoderm 
of coral animals and is covered by a host-derived membrane 
[37]. Expulsion of Symbiodiniaceae from coral cells could 
damage the structure of coral cell membrane, resulting in 
the loss of structural polar lipids, such as DGCC, PC, and 
CerP. Additionally, the biosynthesis of DGCC varied with 
Symbiodiniaceae species; for example, thermosensitive Cla-
docopium C3 has a higher content of DGCC than thermotol-
erant Durusdinium trenchii [38]. The loss of thermosensi-
tive Symbiodiniaceae under thermal stress conditions might 
result in the decline of DGCC [39, 40].

PAF and lysoPAF are coral host-derived central inflam-
matory modulators that participate in the coral defense 
against environmental stress [41], and are believed to play 
an essential role in coral self/non-self-recognition and 
immune response. Under stress conditions, the inactivated 
form, lysoPAF, could be converted to the activated form, 
PAF, with the catalysis of lysoPAF acetyltransferase [15]. 
For example, when corals were damaged during competi-
tive interactions with other species [15, 41] or exposed to 
ultraviolet light irradiation [41], the expression of the gene 
encoding lysoPAF acetyltransferase was strengthened, 
accompanying the increase of PAF. The corals that survived 
from historical bleaching also possessed higher amounts of 
PAF than those from historical unbleaching [18]. Therefore, 
when P. decussata were exposed to thermal stress, the down-
regulation of lysoPAF C-16 and lysoPAF C-18 implicated 
the participation of coral host immune modulation [42].

In the present study, the degree of saturation of the poten-
tial biomarkers of structural lipids in heat-stressed P. decus-
sata was higher. This result can be considered as a response 
of coral holobiont to prevent leakage of biological mem-
branes at high temperature [38, 43], because lipid satura-
tion affects the biophysical properties of the cell membrane, 
including thylakoid membrane melting point [44]. The up-
regulation of lysoPC (P-16:0) and lysoPC (P-18:0) in heat-
stressed P. decussata might result from the deficiency of the 
synthesis of polyunsaturated lysoPC [45].

Accumulation of peptides to resist 
high‑temperature‑induced oxidative stress

Peptides possess various biological functions, including 
antioxidant, signal transduction, and regulator [46]. For 

example, proline-arginine from salmon showed antioxida-
tive activity against hydroxyl and superoxide anion radicals 
[47]; pyroGlu-Leu had the functions of hepatoprotection 
[48] and anti-inflammation [49]. More pieces of evidence 
have shown that bioactive peptides could decrease oxida-
tive stress biomarkers (e.g., lipid peroxidation, intracellular 
ROS levels, apoptosis), increase activities of diverse anti-
oxidant enzymes, and modulate levels of antioxidant mol-
ecules [47]. In our study, the accumulation of Glu-Leu and 
Glu-Glu-Glu-Glu in thermal-stressed P. decussata might 
be a response of the coral host to oxygen stress [19]. These 
peptides might be derived from proteolysis or insufficient 
peptide clearance [50].

Cooperation of various metabolites to maintain 
homeostasis of P. decussata holobiont

Thermal stress necessitates an increase in energy consump-
tion and reallocates metabolic energy for maintaining cel-
lular homeostasis. Tricarboxylic acid cycle (TCA) cycle, in 
which acetyl CoA catalyzes essential intermediary metab-
olism, is the primary source of energy production. In our 
results, the increased level of pantothenate and panthenol 
in heat-stressed corals might counteract the inefficiency of 
energy production, making energy production more costly. 
The accumulation of pantothenate in the TCA cycle could 
possibly suppress aspartate synthesis, resulting in the 
decreased content of aspartate.

Amino acids play critical roles in biosynthesis, growth, 
respiration via gluconeogenesis, and nitrogen recycling in 
alga-invertebrate symbiosis [51]. The decrease of various 
amino acids indicated dampened metabolism, which could 
be possibly attributed to three reasons: (1) photoinhibition 
resulted in the decline of nitrogen assimilation activity, 
reflected by the declined abundances of Glu and Gln, two 
sensitive indicators of nitrogen assimilation in coral symbio-
sis [52]. (2) The low efficiency of energy production under 
thermal stress could allocate energy preferentially to basic 
survival, resulting in the reduced activity of amino acid bio-
synthesis (a process consuming cellular energy). (3) The 
increased energy cost for maintaining homeostasis under 
elevated temperature could facilitate energy generation from 
an alternate pathway, such as amino acid metabolism via 
gluconeogenesis [14, 17].

TMAO and betaine are organic osmolytes that can assist 
stabilization of cellular molecular structure against thermal 
stress. For example, TMAO can increase protein thermal 
stability at an increased temperature [53] while acting as 
a cryoprotectant at a decreased temperature [54]. It has 
been reported that the production of TMAO from carni-
tine in humans shows inter-personal difference because 
TMAO metabolism depends on the gut microbiome whose 
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metabolic functions are heterogeneous between individuals 
[55]. In our study, the observed down-regulation of TMAO 
metabolism in heat-stressed corals could result from the 
change in microbial community because thermal stress 
could reassemble the community structure [56]. Last but 
not least, betaine (an osmolyte commonly found in plants, 
mammals, and bacteria) can assist cells to re-establish turgor 
pressure under increased osmolality conditions [21] and pro-
tect plants and algae against photosynthesis damage under 
high irradiance or unusual temperature stress [13]. Taken 
together, we speculated that the destruction of microbial 
and algae communities in coral holobiont by thermal stress 
could lead to the disorder of TMAO and betaine metabolism 
and thus destabilize cellular structures, which could conse-
quently trigger coral bleaching.

Conclusion

In the present study, an untargeted mass spectrometry–based 
metabolomics method was applied to investigate how P. 
decussata coral metabolome is shaped by high-temperature-
induced coral bleaching. By comparing the metabolic pro-
files between healthy corals and bleached corals, we detected 
a total of 60 metabolites (e.g., lipids, fatty acids, peptides, 
and some small-molecule metabolites) as potential bio-
markers for coral bleaching. The regulation of these diverse 
coral metabolites and their associated metabolic pathways 
(lipid metabolism, peptide metabolism, amino acid metabo-
lism, and other small-molecule metabolism) in response to 
heat treatment were characterized. Based on these results, 
we proposed the biochemical adaption of coral holobiont 
undergoing heat-induced bleaching process, as summarized 

in Fig. 6. Under heat stress, corals could activate the meta-
bolic pathways of gluconeogenesis (such as lipid hydroly-
sis or aminolysis) to meet the energetic demands for basic 
survival, thus showing a corresponding decrease in a wide 
variety of storage lipids, fatty acids, and amino acids. The 
synthesis of two intermediates in the TCA cycle, pantothen-
ate and panthenol, was strengthened to fortify the efficiency 
of energy production. Besides, the corals activated immune 
response and accumulated antioxidative peptides to defend 
corals against oxidative stress. Heat stress also suppressed 
the photosynthesis of Symbiodiniaceae dinoflagellate and 
affected nitrogen assimilation and amino acid levels. Addi-
tionally, small-molecule osmolytes that synergistically 
maintain holobiont homeostasis were declined upon coral 
bleaching; thereafter when the homeostasis was destabilized, 
the content of structural lipids was dropped once Symbio-
diniaceae was expelled from the coral host. Overall, this 
work identified a set of metabolites as diagnostic markers of 
coral bleaching and provided insights into the biochemical 
and physiological mechanisms involved in coral bleaching.
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