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A B S T R A C T

Understanding the characteristics of the growth zones of live corals and competitive algae, including turf algae 
and macroalgae, is crucial for assessing the degradation of coral reef ecosystems. However, identifying live corals 
and competitive algae in multispectral satellite images is challenging because different objects can have similar 
spectra. To address this, we used two satellite images acquired at different times (Landsat thematic mapper (TM), 
Landsat operational land imager (OLI), or Sentinel-2 multi-spectral instrument (MSI)) to assess the growth zone 
characteristics of live corals and competitive algae. This assessment leveraged the seasonal dieback of compet
itive algae and the relative stability of live-coral growth zones over a short period. Specifically, we developed a 
normalized red–green difference index (NRGI) to segment live-coral-or-competitive-alga growth zones in satellite 
images. By comparing the segmentation results from an image captured during a period with few competitive 
algae and another image captured during a period with lush competitive algae, we estimated the growth zone 
areas of the live corals and competitive algae. Finally, we calculated the ratio of the competitive-alga growth 
zone area to the live-coral growth zone area (RCL). Experiments on eight typical coral islands and reefs in the 
South China Sea (SCS) from 1995 to 2022 revealed that: (1) the identification accuracies of live-coral-or- 
competitive-alga growth zones reached 80.3 % and 92.6 % during periods with few competitive algae 
(January to March) and lush competitive algae (April to October), respectively; (2) the RCL was well correlated 
with the coral-macroalgae encounter rate (an ecological index indicating the pressure of the competitive algae on 
the live corals) (r = 0.79, P<0.05); and (3) the trends in the growth zones of competitive algae and live corals, 
along with the RCL, were consistent with major ecological events in the SCS, such as coral bleaching, outbreak of 
Acanthaster planci, and black band disease. (4) Moreover, a time-lagged correlation was observed between heat 
stress and the RCL. In summary, the proposed approach is simple, effective, and feasible. The RCL is a valuable 
indicator of the status of coral reef ecosystems, highlighting the pressure of competitive algae on live corals and 
the degradation of coral reef ecosystems. This method introduces a novel application of multispectral satellite 
images for assessing coral reef ecosystems and has significant potential for future coral reef ecosystem 
monitoring.

1. Introduction

Coral reefs, often referred to as the rainforests of the sea, provide 
numerous benefits, including seafood, medicines, building materials, 
and industrial materials. They also play crucial roles in coastal protec
tion, environmental conservation, and sustainable development 
(Moberg and Folke, 1999). Despite these benefits, coral reefs worldwide 

are experiencing severe degeneration. For example, the live coral cover 
(LCC) of the Xisha Islands in the South China Sea (SCS) declined 
dramatically from 70 % in the 1980 s to 15 % in 2019 (Yu, 2012; Li et al., 
2019a). Similarly, in the Caribbean, the LCC decreased from approxi
mately 50 % in the 1970 s to 20 % in 2021 (Gardner et al., 2003; McField 
et al., 2022). The LCC of the Great Barrier Reef decreased from 28 % to 
14 % between 1985 and 2012 (De’Ath et al., 2012). Although recovery 
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was observed in the northern and central parts of the Great Barrier Reef 
between 2017 and 2022, this recovery was interrupted once again in 
2023.

The competition between corals and both turf algae and macroalgae 
represents a quintessential competitive dynamic within coral reef eco
systems (McCook, 2001). As the LCC decreases, these types of algae 
often proliferate, subsequently inhibiting coral growth, reproduction, 
and recovery (Birrell et al., 2005). In many instances, turf algae and 
macroalgae can even replace corals as the dominant species within the 
ecosystem (McManus and Polsenberg, 2004).

In this work, turf algae are defined as the heterogeneous assemblages 
of short filamentous algae (e.g., Sphacelaria) and cyanobacteria (e.g., 
Synechococcus) (Fricke et al., 2011). Their presence, along with accu
mulated sediment, can inhibit the attachment of coral larvae to the 
seabed (Birrell et al., 2005). Macroalgae, characterized by greater 
heights, lengths, and biomasses (Liao et al., 2016), are categorized into 
fleshy macroalgae (e.g., Asparagopsis) and calcified macroalgae (e.g., 
Halimeda) (Liao et al., 2021). Corals suffer damage from macroalgae 
through various mechanisms (River and Edmunds, 2001). For example, 
macroalgae can release chemosensitive substances that not only reduce 
coral photosynthesis but also cause coral bleaching and mortality 
(McCook, 2001; Liao et al., 2016). With the severe decline in the LCC, 
many coral communities have been gradually replaced by turf algae and 
macroalgae (Supporting Information, Fig. S1) (Liao et al., 2021). Thus, 
changes in the growth zones of live corals and competitive algae 
(including turf algae and macroalgae) can reflect the pressure exerted by 
algae on live corals and reveal the extent of degradation within coral 
reef ecosystems.

Unfortunately, shifts between live-coral growth zones and 
competitive-algae growth zones are primarily assessed via field 
methods, such as standardized transect or photo quadrat techniques 
(Chen et al., 2015; Liao et al., 2021). These approaches are time- 
consuming and labour-intensive. Additionally, the results are limited 
by the number and distribution of the sampling sites, complicating their 
application for continuous and large-scale monitoring of coral reefs 
(Madin and Madin, 2015). Consequently, historical monitoring data on 
live-coral and competitive-algae growth zones across global coral reefs 
remain sparse.

Multispectral satellite images offer a valuable technique for 
observing large-scale areas with high temporal and spatial resolutions. 
Thus, satellite remote sensing is regarded as a powerful tool for char
acterizing shifts between live-coral growth zones and competitive-algae 
growth zones (Huang et al., 2019). However, the spectral reflectances of 
live corals and competitive algae are remarkably similar in the visible 
band (the problem of different objects having the same spectrum), 
complicating their distinction in multispectral satellite images 
(Hochberg and Atkinson, 2003; Leiper et al., 2011; Chen et al., 2015; 
Zeng et al., 2020). As a result, many applications either overlook 
competitive algae in healthy coral reef ecosystems or combine live corals 
and competitive algae into a single category. For example, the Allen 
Coral Atlas, a publicly available coral reef map, classifies both under the 
same category (https://www.allencoralatlas.org/).

Therefore, in this study, we adopted a novel approach by utilizing the 
seasonal dieback of competitive algae to develop a straightforward 
index. This index describes the characteristics of live-coral growth zones 
and competitive-algae growth zones throughout the year, on the basis of 
multispectral satellite images. Unlike traditional approaches that focus 
solely on achieving higher classification accuracy, this study emphasizes 
the importance of the index in reflecting the status of the coral reef 
ecosystem. Specifically, the main contributions are as follows: 1) A new 
method to address the challenge of spectral similarity among different 
objects in remote-sensing analysis, which is specifically tailored to 
studying the ecological dynamics of coral reefs, is proposed. 2) An 
innovative concept that integrates the training of both sample classifiers 
and remote-sensing image classifiers is implemented. 3) The effective
ness of the remote-sensing index in assessing the ecological status of 

coral reefs is validated. 4) The shifts between live-coral growth zones 
and competitive-algae growth zones across eight coral reefs in the SCS 
over the past 25 years are determined. The proposed method provides a 
crucial foundation for integrating coral reef ecology with remote sensing 
technology and offers valuable data for understanding the pressure 
exerted by competitive algae on live corals and the process of coral reef 
ecosystem degradation.

2. Materials and methods

2.1. Study area

The South China Sea (SCS), the largest semienclosed marginal sea in 
the northwest Pacific, hosts a critical part of the global coral reef 
ecosystem. Several coral reefs in the SCS, including Beijiao, Qilianyu, 
Yongxingdao, Yongle Atoll, Huaguangjiao, Panshiyu, Yuzhuojiao, Lan
ghuajiao, and Huangyandao, have been selected as focal areas (Fig. 1).

2.2. Experimental data

To assess the dynamic changes in live-coral growth zones and 
competitive-algae growth zones, we utilized a long-term series dataset 
constructed from Landsat multispectral images (1995–2022) and 
Sentinel-2 multispectral images (2018–2022). For the Landsat satellites, 
we employed thematic mapper (TM) and operational land imager (OLI) 
images, while for the Sentinel-2 satellites, we used multi-spectral in
strument (MSI) images. All the images included blue, green, red, and 
near-infrared bands. The spatial resolution was 30 m for the Landsat TM 
and OLI images and 10 m for the Sentinel-2 MSI images. In this study, 
the green and red bands were utilized to construct the Normalized Red- 
Green Difference Index (NRGI). Additionally, a GeoEye-1 true-colour 
image captured on February 25, 2014, and a WorldView-2 true-colour 
image captured on October 9, 2014, were used in this study to evaluate 
the impact of resolution changes on our results. Both images have a 
resolution of approximately 1.84 m. Prior to feature extraction, the 
remote sensing reflectances were estimated from these satellite images 
via traditional preprocessing steps, as illustrated in Supporting Infor
mation C. Detailed information regarding the images used is listed in 
Table S2.

In-situ live coral covers (LCCs) and competitive alga covers (CACs) 
were used to train a classifier for identifying live-coral growth zones and 
competitive-algae growth zones in satellite images. Specifically, the 
source data were obtained from investigative cruises conducted by our 
team in 2013, 2015, 2021, and 2023. During these cruises, the LCCs and 
CACs were recorded via a video line intercept transect technique, as 
detailed in Appendix A of Huang et al. (2018). As shown in Fig. 1, the 
surveys covered 138 randomly selected in-situ sites: 46 sites were sur
veyed in 2013, 58 in 2015, 18 in 2021, and 16 in 2023. The 122 pairs of 
LCCs and CACs from the sites surveyed in 2013, 2015, and 2021 were 
reported by Chen et al. (2019) and Liao et al. (2021) and were used as 
the training set in this paper. The LCCs and CACs from the remaining 16 
sites surveyed in 2023 were specifically collected to supplement this 
research and serve as the test set. Furthermore, Chen et al. (2019)
interpreted 71 coral-macroalgae encounter rates (CMERs) from videos 
recorded during investigative cruises, and these rates were also utilized 
in our discussion. The CMER is an ecological index that reflects the 
competitive pressure exerted by algae on live corals.

Additionally, remote sensing Sea Surface Temperature-based Degree 
Heating Week (DHW) is used to indicate accumulated heat stress in a 
given area over the past 12 weeks (3 months), which can result in coral 
bleaching and mortality. In this work, the DHW data for the SCS were 
provided by the National Oceanic and Atmospheric Administration 
(NOAA) Coral Reef Watch (CRW) (https://coralreefwatch.noaa.gov/ 
product/vs/data.php) and utilized in the discussions.
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2.3. Methods

(1) Construction of a normalized red–green band-difference index 
(NRGI)

On the basis of the seasonal dieback of the competitive algae, we 
divided a year into two periods: the few-competitive-alga-period and the 
lush-competitive-alga period. The few-competitive-alga period refers to 
the months when most competitive algae are dead, and the lush- 
competitive-alga period refers to the months when the competitive 
algae are lush. Specifically, for the SCS, the few-competitive-alga period 
is from January to March, and the lush-competitive-alga period is from 
April to October. November and December were excluded because they 
coincide with the gradual decline of competitive algae, placing the algae 
coverage in a transitional phase between its peak and decline. Moreover, 
during these months, remote sensing images are frequently obscured by 
thick clouds due to the transition from the southwest monsoon to the 
northeast monsoon.

To address the issue of different objects having the same spectrum 
when distinguishing live-coral growth zones from competitive-algae 
growth zones (Hochberg and Atkinson, 2003; Leiper et al., 2011; Chen 
et al., 2015; Zeng et al., 2020), we used the differences between satellite 
images acquired during these two periods to distinguish these zones 
throughout a year. To implement this, a normalized red–green band- 

difference index (NRGI) was constructed as follows.
Both live corals and competitive algae contain chlorophyll, which 

results in high reflection in the green band and strong absorption in the 
red band (Xu et al., 2019). As demonstrated in Supporting Information
Fig. S2, significant differences are observed in the blue–green and 
red–green bands of the corals. However, Mumby and Edwards (2002)
noted that atmospheric Rayleigh scattering affects the red band less than 
the blue band does. As a result, the contrast between the red and green 
bands is usually greater than that between the blue and green bands for a 
satellite image. Additionally, the red band of the Landsat or Sentinel-2 
images has a narrower bandwidth than the blue band. Therefore, the 
red and green bands were chosen to identify live corals and competitive 
algae. Specifically, the NRGI was constructed as follows: 

NRGI =
G − R
G + R

(1) 

where G and R are the reflectances in the green and red bands, respec
tively.

According to Supporting Information Fig. S2, the NRGI values for live 
corals and competitive algae should be greater than 0. However, pre
vious studies have reported that it is difficult for the red band re
flectances of live corals and competitive algae to reach 0 (Zeng et al., 
2020). In other words, the NRGI values of live corals and competitive 
algae generally cannot reach 1. For this reason, a threshold TNRGI was set 

Fig. 1. Distribution of the studied islands and reefs in the South China Sea (SCS): a) Beijiao; b) Qilianyu; c) Yongxingdao; d) Yongle Atoll; e) Huaguangjiao; f) 
Yuzhuojiao; g) Panshiyu; h) Langhuajiao; and i) Huangyandao. The dots represent the in-situ survey sites. The map in the top left corner was obtained from the 
Hainan Administration of Surveying Mapping and Geoinformation (http://hism.mnr.gov.cn/). The map number is GS qiong (2023) 040.
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to identify the live-coral-or-competitive-algae growth zones in the sat
ellite images. Specifically, a pixel was classified as a live-coral-or- 
competitive-alga growth pixel if and only if the NRGI was greater than 
0 and less than TNRGI(Criterion ①). Considering that the colour of live 
coral is strongly influenced by the density of zooxanthellae, which may 
vary with season and/or temperature, different TNRGI values are set for 
the few-competitive-alga period and the lush-competitive-alga period.

Taking the estimation of the TNRGI corresponding to the few- 
competitive-alga-period as an example, we denote the set composed of 
all the LCCs as S = {LCC1, LCC2,⋯, LCC122}. Furthermore, we set 
another threshold for the LCCs, denoted as LCCT, and defined an in-situ 
sample as a live-coral-or-competitive-algae growth sample if and only if 
LCC > LCCT(Criterion ②). Under these conditions, comparisons were 
conducted using the workflow shown in Fig. 2 to determine the value of 
TNRGI:

1) Let an intermediate variable Ci = 2%+i × 0.1% (i varies from 0 to 
80, or Ci varies from 2 % to 10 % in increments of 0.1 %). For each 
iteration i, we executed the following steps:

a) We conducted cross-validation via the leave-one-out method. That 
is, for j varying from 1 to 122, we separated the LCC set S into 

{
LCCj

}

(test sample set) and Sj = S −
{
LCCj

}
(training set).

b) We further divided Sj into two subsets via Criterion ② with 
LCCT = Ci: the subset comprising live-coral-or-competitive-algae 
growth samples was denoted as Ui,j, and the subset comprising other 
samples was denoted as Vi,j = S − Ui,j. The NRGIs calculated from the 
satellite images corresponding to Ui,j and Vi,j were denoted as Mi,j and 
Ni,j respectively.

c) We computed the frequency distribution histogram of the NRGI 
within the range of 0–1, using an interval of 0.05 for both Mi,j and Ni,j.

d) We fit the frequency distribution histograms of the NRGI for Mi,j 
and Ni,j via Gaussian functions and estimated their corresponding 
Gaussian probability density functions, i.e., gMi,j (x) and gNi,j (x). We 
denoted their corresponding cumulative distribution functions as FMi,j (x)
and FNi,j (x), respectively. Accordingly, if an NRGI threshold t was used to 

identify the live-coral-or-competitive-algae growth zones via Criterion 
① with TNRGI = t, the error probability for the live-coral-or-competitive- 
algae growth zones was 1 − FMi,j (t), and the error probability for other 
zones was FNi,j (t).

e) We constructed the following objective function on basis of the 
principle of minimizing the error probability: 

Li,j(t) = [1 − FMi,j (t)]+ FNi,j (t) (2) 

f) We solved for the t that corresponds to the minimum of the 
objective function (2), denoting the solution as t*

i,j.
g) We applied t*i,j to the NRGI of the test sample via Criterion ① with 

TNRGI = t*i,j, and applied Ci to the test sample via Criterion ② with 
LCCT = Ci.

2) After executing steps a–g for all j with a fixed i, we mimicked the 
assessment of a classification to compute a quasi-confusion matrix. 
Specifically, for all j values with a fixed i value, we counted the number 
of test samples classified into live-coral-or-competitive-algae growth 
zones via both Criterion ① and Criterion ② in step g (n(i)

11), the number of 
test samples classified into nonlive-coral-or-competitive-algae growth 
zones via both Criterion ① and Criterion ② (n(i)

22), the number of test 
samples classified into live-coral-or-competitive-algae growth zones via 
Criterion ① but classified into nonlive-coral-or-competitive-algae 
growth zones via Criterion ② (n(i)

12), and the number of test samples 
classified into nonlive-coral-or-competitive-algae growth zones via Cri
terion ① but classified into live-coral-or-competitive-algae growth 
zones via Criterion ② (n(i)

21). Thereafter, we computed the quasi-overall 
accuracy (OAi) and the quasi-kappa coefficient (Ki) on the basis of the 
quasi-confusion matrix: 

OAi =
n(i)

11 + n(i)
22

n(i)
11 + n(i)

12 + n(i)
21 + n(i)

22

(3) 

Fig. 2. Program for estimating the threshold TNRGI used to separate the live-coral or competitive-algae growth zones in this study.
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Ki =
OAi − Ei

1 − Ei
(4) 

where 

Ei =
[n(i)

11 + n(i)
12][n

(i)
11 + n(i)

21] + [n(i)
12 + n(i)

22][n
(i)
21 + n(i)

22]

[n(i)
11 + n(i)

12 + n(i)
21 + n(i)

22]
2 (5) 

3) We searched for the Ci that maximizes the quasi-kappa coefficient 
Ki and denote the solution as C*.

4) We re-executed steps b–f by substituting Ci and Si,j with C* and S, 
respectively. The corresponding solution of Equation (2) in step f was 
used as the final estimated TNRGI.

Note that the TNRGI corresponding to the lush-competitive-alga 
period was also estimated using the same program, with the LCC set S 
substituted by {LCC1 + CAC1, LCC2 + CAC2,⋯, LCC122 + CAC122}. For 
convenience, in the following text, the TNRGI corresponding to the few- 
competitive-alga period is denoted as TF

NRGI, and the TNRGI correspond
ing to the lush-competitive-alga period is denoted as TL

NRGI.
Once TF

NRGI and TL
NRGI are determined, they can be fixed. In other 

words, it is unnecessary to repeat steps 1–4 in practical applications; we 
can simply apply the TF

NRGI and TL
NRGI determined in this paper to other 

Landsat or Sentinel-2 multispectral images. Another point is that 
although the interval of the histogram in step c may impact the shape of 
the distribution, in our experiments, we observed that the estimated t*

i,j 

values in step f were very similar to each other when we set the interval 
to 0.03, 0.04, 0.05, 0.06, and 0.07.

(2) Estimation of the characteristics of the growth zones of live corals 
and competitive algae

Competitive algal growth exhibit significant seasonal dieback 
(Ferrari et al., 2012; Low et al., 2019; Luo, 2019), whereas coral growth 
shows minimal seasonal variation unless impacted by ecological di
sasters, such as mass coral bleaching and mortality (Roff, 2020). In other 
words, live-coral growth zones should not expand or shrink significantly 
within a year. For this reason, after TF

NRGI and TL
NRGI were determined via 

the program shown in Fig. 2, the approach used to estimate the char
acteristics of the live-coral growth zones and competitive-algae growth 
zones can be summarized as shown in Fig. 3. The exclusions of deep- 
water areas, above-water areas, and underwater sand areas from the 
satellite image shown in the figure were achieved through several 
traditional methods (Supporting Information D).

For convenience, we denoted the set of live-coral growth pixels ob
tained by applying TF

NRGI to a few-competitive-alga-period NRGI image 
as C and the set of live-coral-or-competitive-algae growth pixels ob
tained by applying TL

NRGI to the corresponding lush-competitive-alga- 
period NRGI image as S. In addition, we further assigned the set of 
live-coral growth pixels from the lush-competitive-alga period to the 
next few-competitive-alga period as E, that is, we can apply TF

NRGI to an 
NRGI image during the next few-competitive-alga period to obtain E.

According to the analysis described in Supporting Information E, the 
program used to extract the characteristics of the live-coral growth 
zones and competitive-algae growth zones shown in Fig. 3 can be 
implemented via the following steps:

1) We estimated the NRGI images from the satellite images during 
the few-competitive-alga period and the lush-competitive-alga period in 
a year, according to Equation (1).

2) We obtained C and S by applying the determined TF
NRGI and TL

NRGI 
to the NRGI images respectively.

3) We took the set of live-coral growth pixels as R = C.
4) We calculated an intermediate index Rr as follows: 

Rr =
|C − S|
|C|

× 100% (6) 

5) If Rr was less than a given value of TRr, we took the set of 
competitive-algae growth pixels as A ≈ S − C and skipped to step 7; 
otherwise, we proceeded to the next step.

6) We obtained E by applying TF
NRGI to the corresponding NRGI image 

and designating the set of competitive-algae growth pixels as A ≈ S − E.
7) We estimated the growth zone characteristics of the live corals and 

competitive algae as follows: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

SR = |R| × Δ2

SA = |A| × Δ2

RS =
SA

SR
× 100% =

|A|

|R|
× 100%

(7) 

where SR, SA, RS, and Δ are the live-coral growth zone area, the 
competitive-algae growth zone area, the ratio of the competitive-algae 
growth zone area to the live-coral growth zone area (RCL), and the 
pixel size of the image, respectively.

It should be additionally noted that Rr (Equation (6)) was used to 
determine whether a mass coral bleaching or mortality event is highly 
likely to occur, thereby deciding whether to execute step 6. According to 
the reef refuge hypothesis, the probability of coral bleaching caused by 
high temperatures decreases with increasing latitude (Riegl and Piller, 
2003). On the basis of this, the Rr value of Beijiao in 2016 was selected 
as the TRr value for use in this study, as a global coral bleaching event 
occurred during 2016 (Supporting Information, Table S1) and Beijiao 
has the highest latitude in the study area, that is, TRr = 2.45%. To test 
the performance when the above TRr was used, we mimicked 

Fig. 3. Schematic diagram illustrating the method used to identify the growth 
zones of live corals and competitive algae.
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classification accuracy assessment to construct a quasi-confusion matrix 
by comparing the coral bleaching or mortality events identified via TRr 
with the ecological events listed in Table S1 of the Supporting Infor
mation. The results showed that the coral bleaching or mortality events 
determined by using TRr were highly consistent with the observed 
events, with a quasi-overall accuracy of 83.6 % and a quasi-kappa co
efficient of 0.66, verifying the feasibility of setting TRr = 2.45% in the 
proposed approach.

3. Results

3.1. Growth zones of live corals and competitive algae

Using the LCC and CAC values obtained from the field surveys (the 
training set shown in Fig. 1) and the satellite images shown in Table S3
of the Supporting Information, we determined the following: 1) TF

NRGI =

0.295 and TL
NRGI = 0.400; 2) LCCT values were 3.3–4.5 % for the few- 

competitive-alga period and 2.9–3.4 % for the lush-competitive-alga 
period; and 3) the quasi-overall accuracies were 80.3 % for identifying 
the live-coral growth zones during the few-competitive-alga period and 
92.6 % for identifying the live-coral-or-competitive-algae growth zones 
during the lush-competitive-alga period (Table 1).

Furthermore, our team investigated 16 survey sites in 2023, the 
distribution of which is shown in Fig. 1. The obtained LCCs and CACs 
were used as a test set to further assess the accuracy. The results revealed 
an overall accuracy of 86.7 % and a kappa coefficient of 0.67 for iden
tifying the live-coral growth zones during the few-competitive-alga 
period, and an overall accuracy of 93.3 % and a kappa coefficient of 
0.64 for identifying the live-coral-or-competitive-algae growth zones 
during the lush-competitive-alga period.

Additionally, it is important to note that the trained LCCT was very 
close to that of Duan (2022), who used an LCC threshold of 3 % to 
identify live-coral growth zones in the Xisha Islands in the South China 
Sea (SCS). This provides further evidence of the effectiveness and cor
rectness of the concept of simultaneously training a sample classifier and 
a remote-sensing image classifier.

In addition, the red and green bands were identified as the optimal 
band pair for constructing a normalized difference index via Landsat or 
Sentinel-2 images. As shown in Table 1, both the quasi-kappa coefficient 
and the quasi-overall accuracy of the proposed NRGI were greater than 
those of the other band pairs.

The live-coral growth zones and competitive-algae growth zones 
were identified via the thresholds TF

NRGI and TL
NRGI through the program 

shown in Fig. 3. One of the results is shown in Fig. 4 (other results are 
shown in Figs. S5–S11). The live-coral growth zones dominated the reef 
flats in the SCS before 2007, with some live corals even growing on parts 
of the lagoon slopes. However, the competitive algae significantly 
expanded after 2009. As the live-coral growth zones in the reef flats 
narrowed, competitive algae began to grow in these areas. Additionally, 
the lagoon slopes started to be covered by a substantial number of 
competitive-algae growth areas.

To further verify the consistency between the results obtained from 
the Landsat images and Sentinel-2 images, the live-coral growth zones 
and competitive-algae growth zones extracted from the Landsat 8 and 

Sentinel-2 images were compared. The satellite images that were uti
lized are listed in Table S4 of the Supporting Information. As shown in 
Fig. 5, the extracted live-coral growth zone and competitive-algae 
growth zone areas were distributed around the 1:1 line, with a corre
lation coefficient (r) of 0.998. Using the method described by Huang 
et al. (2018) to estimate the mean relative error (MRE), the MRE of the 
areas extracted from Landsat 8 compared with those from Sentinel-2 was 
approximately 8.0 %. Similarly, the ratio of the competitive-algae 
growth zone area to the live-coral growth zone area (RCL) was also 
distributed around the 1:1 line (r = 0.992, MRE=8.5 %). Additionally, 
the live-coral growth zones and competitive-algae growth zones ob
tained from the Sentinel-2 images were further selected as references to 
calculate the overall accuracy and kappa coefficient of the results of the 
Landsat images. The results show that the average overall accuracy and 
average kappa coefficient were 0.88 ± 0.05 and 0.74 ± 0.09, 
respectively.

For these reasons, we conclude that the areas extracted via Landsat 
and Sentinel-2 images were highly consistent, despite their differing 
resolutions of 30 m and 10 m, respectively. This finding demonstrates 
that the results from both the Landsat images and the Sentinel-2 images 
can be reliably used to construct a time series.

3.2. Time series the characteristics of the growth zones of live corals and 
competitive algae

The time series of the characteristics of the live-coral growth zones 
and competitive-algae growth zones are shown in Fig. 6. Overall, the 
area of the live-coral growth zones decreased, whereas the area of the 
competitive-algae growth zones expanded. Correspondingly, the RCL 
increased over time. Specifically, the live-coral growth zones experi
enced three periods of reduction and two periods of recovery. Taking 
Beijiao as an example, reductions in the live-coral growth zones 
occurred from 1997 to 1999, 2005–2009, and 2016–2022, with re
coveries occurring from 1999 to 2005 and 2009–2015.

To test the sensitivities of satellite data in estimating the live-coral 
growth zone and competitive-algae growth zone characteristics, we 
calculated the live-coral growth zone area, the competitive-algae growth 
zone area, and the RCL of Panshiyu in 2023 by using 12 different 
combinations of few-competitive-alga period and lush-competitive-alga 
period images (2 Sentinel-2 MSI images captured in the few- 
competitive-alga period and 6 captured in the lush-competitive-alga 
period). The standard deviations of the live-coral growth zone area, 
the competitive-algae growth zone area, and the RCL were 0.11 km2, 
0.28 km2, and 0.035, respectively. These standard deviations are much 
smaller than the variations observed in Fig. 6. Therefore, we conclude 
that the changes caused by using different few-competitive-alga period 
or lush-competitive-alga period images can be considered negligible 
when analysing the changes in coral reef ecosystems via the proposed 
live-coral growth zone area, competitive-algae growth zone area, and 
RCL.

Furthermore, the live-coral growth zones and competitive-algae 
growth zones of Lingyangjiao (16◦27′35″ N 111◦35′06″ E) in Yongle 
Atoll were interpreted from the GeoEye-1 image captured on February 
25, 2014, and the WorldView-2 image captured on October 9, 2014. 

Table 1 
Assessments of different band pairs in constructing a normalized difference index for identifying the live-coral-or-competitive-algae growth zones via a Landsat or 
Sentinel-2 images.

Band Pair Green–Red (NRGI) Blue–Green Coastal–Green Blue–Red Coastal–Red Coastal–Blue

FCAP Quasi-Kappa Coefficient 0.602 0.295 0.344 0.222 0.184 0.396
Quasi-Overall Accuracy 80.3 % 64.8 % 67.2 % 61.5 % 59.0 % 76.1 %

LCAP Quasi-Kappa Coefficient 0.701 0.326 0.241 0.467 0.448 0.363
Quasi-Overall Accuracy 92.6 % 67.2 % 61.5 % 74.6 % 76.2 % 79.3 %

Note: NRGI, FCAP, and LCAP are the normalized red–green band-difference index, the few-competitive-alga-period, and the lush-competitive-alga period, respectively. 
Cross-validation was performed using leave-one-out method, involving a total of 122 validation samples.
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These high-resolution live-coral growth zones and competitive-algae 
growth zones were used as references to assess the live-coral growth 
zones and competitive-algae growth zones extracted from Landsat OLI 
images captured in 2014. The results show that the overall accuracy and 
the kappa coefficient were 92.7 % and 0.73, respectively, for the few- 
competitive-alga-period and 90.9 % and 0.82, respectively, for the 
lush-competitive-alga period. In other words, the live-coral growth 
zones and competitive-algae growth zones extracted from the 30-m 
resolution Landsat OLI images were consistent with those from the 
high-resolution images. In fact, the differences between the live-coral 
growth zone area, the competitive-algae growth zone area, and the 

RCL extracted from the high-resolution images and the Landsat OLI 
images were only 0.28 km2, 0.41 km2, and 0.023, respectively.

4. Discussion

4.1. Utilizing the seasonal dieback of competitive algae is reasonable

According to Li et al. (2011a), live corals often expel some of their 
endosymbiotic zooxanthellae during the lush-competitive-alga period 
because of the increases in temperature and solar radiation. This usually 
leads to varying degrees of coral bleaching (Fitt et al., 2000). However, 

Fig. 4. Growth zones of live corals and competitive algae in Beijiao. * denotes the latest true color image.

Fig. 5. Comparisons of the live-coral-or-competitive-algae growth zones extracted from the Landsat 8 images and Sentinel-2 images. (a) Areas obtained from Landsat 
and Sentinel-2 images and (b) RCLs obtained from Landsat and Sentinel-2 images.
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satellite images often appear darkener, rather than whiter, from the few- 
competitive-alga period compared with the lush-competitive-alga 
period (Fig. 7(c) and (e)). This contradiction can be explained by the 
seasonal dieback of the competitive algae. Moreover, comparisons of the 
LCC and CAC obtained from the satellite images and the field surveys 
further illustrate that the darkening from the few-competitive-alga 
period to the lush-competitive-alga period was caused by the seasonal 
dieback of the competitive algae in the SCS. The reason for this is that 
except for the situation shown in Fig. 7(c) and (e), other combinations of 
the LCCs and CACs do not cause the hue of the image to change from 
brighter during the few-competitive-alga period to darker during the 
lush-competitive-alga period (Fig. 7(a), (b), and (d)). In fact, as addi
tional evidence, the darkening of satellite images due to algal growth has 
also been reported for seagrass beds in the Caribbean Sea (Wabnitz et al., 
2008).

Owing to the seasonal dieback of competitive algae, the areas of the 
live-coral-or-competitive-algae growth zones gradually decreased after 
October, reaching their minimum values typically between January and 
March. Taking the Sentinel-2 images of Beijiao and Panshiyu from 2018 
to 2019 as examples (detailed information about the utilized images is 
presented in Table S5 of the Supporting Information), the live-coral-or- 
competitive-algae growth zones were extracted each month via the 
proposed NRGI. The results, shown in Fig. 8, indicate that in the SCS, the 
areas of the live-coral-or-competitive-algae growth zones were larger 
from April to October than in other months. Additionally, the 
competitive-algae growth zone area in Glover’s Reef Atoll, which is 
located at a similar latitude, has been reported to exhibit a trend of 
similar seasonal changes (Ferrari et al., 2012).

According to field survey data, common turf algae in the SCS include 
Sphacelaria, Ectocarpus, Feldmannia, Hinksia, Polysiphonia, Gelidiella, and 
Gelidiopsis. Common macroalgae include Asparagopsis, Dictyota, 

Lobophora, and Halimeda. Notably, except for Halimeda, seasonal 
dieback of these algae occurs in the SCS. On the basis of the interpre
tation of videos of field survey transects, the average CAC was approx
imately 7.5 %, with Halimeda covering only 0.27 %, accounting for 3.6 
% of the competitive algae. Thus, the influence of Halimeda on the 
seasonal dieback of competitive algae can be considered negligible in 
this study.

In addition, some seagrasses, such as Halophila ovalis, are also found 
in some coral reefs in the SCS, as observed in field survey videos. 
Fortunately, as shown in Fig. 9, the seagrasses are primarily distributed 
in the underwater sand in the deep lagoons, where the corresponding 
satellite image pixels were classified as the deep-water area and 
excluded in the proposed approach. After these areas were excluded, 
only 3.3 % of the field survey videos contained seagrasses, with an 
average coverage of much less than 0.1 %. Therefore, similar to Hal
imeda, the influence of seagrasses on the extraction of the live-coral 
growth zones and competitive-algae growth zones could also be 
considered negligible.

For these reasons, we believe that utilizing the seasonal dieback of 
competitive algae is reasonable; thus, the few-competitive-alga period 
and lush-competitive-alga period can be defined as January–March and 
April–October, respectively, in the SCS. Additionally, when sufficient 
satellite images are available, the set of live-coral growth pixels and the 
set of live-coral-or-competitive-algae growth pixels can also be deter
mined via the pixels corresponding to the minimum and maximum areas 
in a year, respectively.

4.2. Competitive-algae growth zone, live-coral growth zone, and their 
ratio are highly important for indicating the status of a coral reef ecosystem

The areas of live-coral growth zones, competitive-algae growth 

Fig. 6. Time series of the growth zone characteristics of the live corals and competitive algae (the live coral growth area, the competitive algal growth area, and the 
ratio of the areas of the competitive algae and live coral growth zones): 1) Beijiao; 2) Qilianyu; 3) Panshiyu; 4) Yongxingdao; 5) Huaguangjiao; 6) Huangyandao; 7) 
Langhuajiao; and 8) Yuzhuojiao.
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zones, and their ratio (RCL) can be used to indicate the pressure exerted 
by competitive algae on live corals and to reveal the extent of degra
dation within coral reef ecosystems caused by mass coral bleaching or 
mortality. The details are as follows:

(1) The ratio of the competitive-algae growth zone area to the live- 
coral growth zone area is strongly correlated with the coral- 
macroalgae encounter rate

The coral-macroalgae encounter rate (CMER) is a crucial ecological 
index that indicates the pressure that competitive algae impose on live 
corals (Chen et al., 2019). As shown in Fig. 10, there is a significant 
linear correlation (r = 0.79, P<0.05) between the RCLs and the CMERs 
reported by Chen et al. (2019). This correlation suggests that the RCL 

can be used instead of the CMER to indicate the pressure exerted by 
competitive algae on live corals. An increase in the RCL signifies a 
greater proportion of competitive algae in the coral reef ecosystem, 
making the RCL a useful indicator of coral-algal phase shifts in coral reef 
ecosystems.

(2) The variations in the characteristics of the growth zones of live 
corals and competitive algae are closely aligned with coral 
bleaching or mortality events in the SCS

Coral reef degradation is generally caused by mass coral bleaching or 
mortality, which can result from temperature anomalies, outbreaks of 
Acanthaster planci, and black band disease (De’Ath et al., 2012; Li et al., 
2019b). Therefore, we compared the characteristics of the live-coral 

Fig. 7. Examples of seasonal changes in corals and competitive algae in satellite images from the few-competitive-alga period to the lush-competitive-alga period. (A) 
& (C) Positions of the survey sites (dots), (B) & (D) LCCs and CACs obtained during the field survey and the corresponding Landsat 8 OLI images. (a) When both the 
LCC and the CAC are much greater than zero (LCC≫0 and CAC≫0), the hues of the image during the few-competitive-alga period and the lush-competitive-alga 
period are both dark; (b) When the LCC is much greater than zero and the CAC is close to zero (LCC≫0 and CAC→0), the hues of both images are also dark; (c) 
& (e) When the LCC is close to zero and the CAC is much greater than zero (LCC→0 and CAC≫0), the hues change obviously from bright during the few-competitive- 
alga period to dark during the lush-competitive-alga period; (d) When both the LCC and the CAC are close to zero (LCC→0 and CAC→0), the hues of the two images 
are bright. Note that (c) is located on the lagoon slope, where the substrate is predominantly sand, while (e) is on the reef flat, where the substrate is primarily rocky. 
The differences in substrate composition cause the satellite image of (c) to appear brighter or whiter than that of (e). However, in both cases, the hues shift from 
relatively bright during the low-competitive-algae period to relatively dark during the lush-competitive-alga period.

Fig. 8. Results of the month-by-month extraction of the live-coral-or-competitive-algae growth zone areas in Beijiao and Panshiyu.
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growth zones and competitive-algae growth zones with several typical 
coral bleaching or mortality events (listed in Table S1 of the Supporting 
Information). Taking Beijiao as an example, the results are shown in 
Fig. 11.

The corals in the SCS likely experienced significant mortality 
following the global coral bleaching events of 1997–1998 and 
2015–2016 (Supporting Information, Table S1). Mass coral mortality is 
usually accompanied by the expansion of competitive algae (Fricke 
et al., 2011), as these algae can cover the skeletons of dead corals and 
occupy the available ecological niches (Raymundo and Maypa, 2002). 
Consequently, except for the decrease in the area of the live-coral 
growth zones, the area of the competitive-algae growth zones and the 
RCL increase after a mass coral bleaching event (McCook, 2001). This is 
consistent with the results presented in Fig. 11.

Furthermore, during the outbreaks of Acanthaster planci and black 
band disease from 2006 to 2009 (Supporting Information, Table S1), the 
area of the live-coral growth zones decreased, whereas the area of the 
competitive-algae growth zones and the RCL increased (Fig. 11). This 
finding aligns with the characteristics of these outbreaks, as both can 
lead to massive coral mortality (Yang et al., 2014; Li et al., 2019b). 
Acanthaster planci preyed on live corals, directly reducing the live-coral 
growth zone area. Moreover, competitive algae occupy vacated spaces, 
expanding their growth zones (Li et al., 2019b). Similarly, black band 

disease exposes coral skeletons, which are then rapidly covered by 
competitive algae, further increasing the area of the competitive-algae 
growth zones (Huang and Yu, 2010; Yang et al., 2014).

In addition, the average LCC of coral reefs in the Xisha Islands 
decreased from more than 60 % before 2006 to less than 5 % in 2011 
because of simultaneous outbreaks of Acanthaster planci and black band 
disease from 2006 to 2009 (Li et al., 2019a). This decrease was much 
more significant than that observed during the mass coral bleaching 
event of 1997–1998. As shown in Fig. 11, the decrease in the live-coral 
growth zone area and the increases in the competitive-algae growth 
zone area and the RCL were much greater from 2006 to 2009 than from 
1997 to 1999. Once again, this is consistent with the dramatic decline in 
the LCCs.

Similarly, as shown in Table S1 of the Supporting Information, the 
density of Acanthaster planci in Beijiao was 0.0017 ind./m2 in 2020, 
which barely exceeded the tolerable limit of 0.0015 ind./m2; this in
dicates that the outbreak of Acanthaster planci in Beijiao began in 2020. 
This outbreak also corresponds well with the decline in the area of the 
live-coral growth zones and the increases in the area of the competitive- 
algae growth zones and the RCL from 2020 to 2021 (Fig. 11).

Fig. 9. Seagrass growth in coral reefs in the SCS (several photographs taken at the Beijiao and Yongle Atoll are presented as examples). A, B, C, and D present several 
frames extracted from the field survey videos (2015). These frames show that the seagrass coverages at the field survey sites were close to zero. E) Several pho
tographs captured during 2022: (E1) seagrasses (Halophila ovalis) were observed in the deep lagoon; (E2) only a small number of Halophila ovalis were observed in a 
few transition zones between the coral growth area and the sandy area; (E3) seagrasses were difficult to find in the live-coral growth zones; and (E4) seagrasses were 
not observed in most of the other transition zones between the coral growth area and the sandy area. F) Photographs of macroalgae (F1) and turf algae (F2) captured 
during 2023, along with a turf algae frame (F3) extracted from the 2023 field survey video: seagrasses were also difficult to find in the competitive-algae growth 
zones. On the other hand, according to (F3), there is little sand in the substrate; instead, it is predominantly composed of reef rocks. Additionally, as shown in (F1), 
(F2), and (F3), the substrate around position F is primarily covered by competitive algae. Notably, position F in this figure corresponds to position e in Fig. 7. 
According to Fig. 7(D), the CAC around this position is 58.80%, while the LCC is 1.02%.

Fig. 10. Correlation between the coral-macroalgae encounter rate (CMER) and the ratio of the competitive-algae growth zone area to the live-coral growth zone 
area (RCL).
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(3) The variations in the characteristics of the live coral and 
competitive algae growth zones are consistent with the recovery 
periods of the coral reefs

In addition to the ecological disaster events, two typical coral reef 
recovery periods in the SCS that were observed in this study were also 
consistent with historical ecological survey data. According to surveys 
conducted by Huang et al. (2011), the coral reefs in the SCS are domi
nated by branched corals. Branched corals can grow quickly and are 
considered the cornerstone of coral reef recovery (Wilson et al., 2019). 
In fact, surveys conducted by Li et al. (2011b) in 2007 revealed a batch 
of newly grown branched corals in the SCS only 10 years after the 
1997–1998 coral bleaching event. Importantly, the ages of most of these 
corals were less than 10 years. Therefore, the coral reefs in the SCS 
experienced a recovery period from 1999 to 2006. This conclusion is 
quite consistent with the variations in the characteristics of the live-coral 
growth zones and competitive-algae growth zones shown in Figs. 6 and 
11.

Furthermore, field surveys have shown that the LCC values of coral 
reefs in the SCS increased from 7.93 % in 2009 to 16.3 % in 2015 (Wu 
et al., 2011; Chen et al., 2019). This increase indicates that coral reef 
ecosystems slowly recovered from 2009 to 2015, which corresponds 
well with the expansions of the live-coral growth zones shown in Figs. 6 
and 11. However, the fact that the LCC reached only 16.3 % indicates 
that the coral reef ecosystems were still unhealthy. Additional evidence 
of the unhealthy state was observed in the CAC of Yongxingdao, which 
was approximately five times greater than the LCC (40.25 % V.S. 6.46 
%) in 2015 (Luo, 2019), whereas the LCC in Yongxingdao was as high as 
~ 90 % in the 1980 s (Yu, 2012). The unhealthy state of these coral reef 
ecosystems is supported by changes in the RCL (Figs. 6 and 11). 
Although the RCL decreased as the coral reef ecosystems recovered, it 
remained greater than 1, indicating the continued unhealthy state of the 
ecosystems.

(4) Time-lagged correlation of heat stress with the ratio of the 
competitive-algae growth zone area to the live-coral growth zone 
area

Heat stress is considered one of the major factors contributing to 

coral degradation (De’Ath et al., 2012; Li et al., 2019a, 2019b). The 
degree heating week (DHW) index can be used to assess accumulated 
heat stress, which can lead to coral bleaching and mortality. Once coral 
death occurs, competitive algae are likely to occupy the positions of the 
dead corals in the subsequent period. This means that the ratio of the 
competitive-algae growth zone area to the live-coral growth zone area 
(RCL) should not increase simultaneously with increasing in DHW or the 
occurrence of a coral bleaching event. Instead, it should increase only 
after the DHW rises or mass coral bleaching events occur. This phe
nomenon can indeed be observed in Fig. 11.

Quantitatively, we further calculated the average DHW over six 
months before and after each day and performed a correlation analysis 
with RCLs for different lag times. Here, all the RCLs shown in Fig. 6 were 
used. As shown in Fig. 12, the peak correlation occurred at lag times 
between 1.4 and 2.1 years, with correlation coefficients ranging from 
0.58 to 0.60. Furthermore, we correlated the DHWs with the RCLs for 
each coral reef that exhibited more than 5 RCLs. The results revealed 
that the maximum correlation coefficients for the reefs ranged from 0.56 
to 0.91, with lag times ranging from 1.4 to 2.3 years.

4.3. Limitations of the proposed methods and corresponding potential 
solutions

In this study, the focus was only on coral islands and reefs in the 
South China Sea (SCS), but the proposed method has great potential for 
application to other coral reefs. First, the proposed method requires 
dividing a year into a few-competitive-alga period and a lush- 
competitive-alga period. For the SCS, the few-competitive-alga period 
and the lush-competitive-alga period refer specifically to Januar
y–March and April–October, respectively. However, these periods may 
differ in other regions. One solution is to 1) apply TF

NRGI to each image in 
a year and select the set with the minimal area as the set of live-coral 
growth pixels and 2) similarly apply TL

NRGI to each image in the same 
year and select the set with the maximal area as the set of the live-coral- 
or-competitive-algae growth pixels. Another simpler solution is to 
redefine the few-competitive-alga period and the lush-competitive-alga 
period for a specific region. For example, as shown in Fig. 13, we can 
obtain the live-coral growth zone area, the competitive-algae growth 
zone area, and the RCL of a coral reef in the southern Great Barrier Reef 

Fig. 11. Comparisons among typical coral bleaching or mortality events, the characteristics of live-coral and competitive-algae growth zones, and heat stress in the 
Xisha Islands of the SCS (using Beijiao as an example). The latest outbreak of Acanthaster planci in the Xisha Islands began in 2018–2019, and its end has not yet been 
reported (Supporting Information, Table S1).
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(Supporting Information, Fig. S12) by redefining the few-competitive- 
alga period and lush-competitive-alga period as June–September and 
November–February, respectively. The variations in the growth zone 
characteristics of the live corals and competitive algae are also quite 
consistent with the mass coral bleaching events and the outbreak of 
Acanthaster planci in the southern Great Barrier Reef.

Cloud cover and limited image availability can restrict the temporal 
resolution of analyses via the proposed method, particularly in early 
years. Fortunately, with the increasing number of remote sensing sat
ellites being launched worldwide, the interval between satellite obser
vations of coral reefs is decreasing. For example, the joint use of Landsat 
8 and Landsat 9 reduces the interval to 8 days, while the joint use of 
Sentinel-2A and Sentinel-2B reduce it to 5 days. Correspondingly, this 
increased frequency allows for more opportunities to select enough 
appropriate images to meet the multitemporal satellite image re
quirements of the proposed approach, even in tropical and subtropical 
regions where coral reefs are often located, and cloudy or rainy weather 
is common. Therefore, we believe that the proposed approach has a 
promising application prospects for future coral reef monitoring.

In addition, some studies have highlighted that ecological changes in 
coral reefs are related to certain oceanic conditions. For example, Yao 
and Wang (2022) reported that severe marine heatwaves (MHWs) 
induced higher rates of coral bleaching, with more than 25 % coral 
bleaching occurring when the total days of MHW exceeded 60 days 
during strong El Niño years. This study provides time series data for the 
live-coral growth zone area, competitive-algae growth zone area, and 
RCL, which can indicate the dynamic status of a coral reef ecosystem. In 

the future, we aim to fuse these time series data with other datasets, such 
as oceanographic data, sea surface temperature (SST), marine cold-spell 
(MCS), and MHW data, to gain a more comprehensive understanding of 
coral reef dynamic changes and their relationships with oceanic 
conditions.

5. Conclusions

To address the challenge of different objects having similar spectra in 
multispectral satellite images for assessing coral reef ecosystems, we 
leveraged the fact that competitive algae undergo seasonal dieback, 
whereas live-coral growth zones remain relatively stable over short 
periods. Rather than striving for higher classification accuracy for live- 
coral and competitive-algae growth zones via a single satellite image, 
we utilized two images taken at different times: one during the few- 
competitive-alga period and another during the lush-competitive-alga 
period (from Landsat TM/OLI or Sentinel-2 MSI). This method 
allowed us to assess the characteristics of the live-coral and competitive- 
algae growth zones (including both areas of both zones and the RCL).

Our approach is straightforward. First, we proposed the NRGI to 
segment live-coral-or-competitive-algae growth zones in two satellite 
images separately. Then, we estimated the growth zone characteristics 
by analysing the differences between the segmentation results from the 
few-competitive-alga period image and the lush-competitive-alga period 
image. The experimental results for eight typical coral islands and reefs 
in the SCS demonstrated the effectiveness and feasibility of the proposed 
method. The derived growth zone characteristics (live-coral growth 

Fig. 12. Correlations between the DHWs and the RCLs for different lag times.

Fig. 13. Comparisons of typical coral bleaching (Berkelmans and Oliver, 1999; Tan et al., 2018; Bainbridge, 2017) and Acanthaster planci outbreak events 
(Matthews et al., 2024) with the characteristics of the live coral and competitive algae growth zones of a coral reef in the southern Great Barrier Reef.
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zone area, competitive-algae growth zone area, and RCL) are crucial for 
determining the status of a coral reef ecosystem.

Intuitively, the varying trends of the live-coral and competitive-algae 
growth zone characteristics were consistent with major ecological 
disaster events and coral reef recovery periods. Quantitatively, the RCL 
was well correlated with the coral-macroalgae encounter rate, and a 
time-lagged correlation was observed between heat stress (DHW) and 
the RCL. Therefore, the proposed growth zone characteristics of live 
corals and competitive algae can serve as feasible and effective indices 
for assessing the status of a coral reef ecosystem, such as the pressure of 
competitive algae on live corals and the extent of degradation of coral 
reef ecosystems caused by mass coral bleaching or mortality events.

In addition to providing historical dynamic information about coral 
reef ecosystems, we believe that the proposed approach has significant 
potential for future coral reef monitoring. This study offers valuable 
insights into the dynamic changes in coral reef ecosystems and provides 
a crucial basis for integrating remote sensing technology and coral reef 
ecology.
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