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A B S T R A C T

The geochemistry of rare earth elements and yttrium (REY with Y, REE without Y) in reefal carbonates is 
increasingly used to investigate both palaeoceanography and modern oceans. Nevertheless, the application of 
these methods to elucidate climate dynamics of the geologic past is limited by their vulnerability to diagenetic 
alterations. Given the meteoric transformation of aragonite to calcite, which represents an extremely unfavorable 
scenario for preserving the original marine signature, we focused on the REY geochemistry of a Holocene coral 
reef, obtained from Well CK2 in the northern South China Sea, which initiated at ⁓7.8 ka BP, but ceased to grow 
vertically at ⁓3.9 ka BP. The Holocene reefal carbonates have undergone neomorphism, transforming aragonite 
into calcite in a meteoric environment and enabling a direct comparison of REY distributions between the 
original aragonite and neomorphic calcite. Despite the preserved REY patterns of stabilized calcite closely 
mirroring those initially present in surface seawater, the ΣREE contents and Ce anomalies vary significantly, 
reflecting mixing of REY from reefal microbialites. Despite these disturbances, the NdN/YbN and Y/Ho ratios of 
Holocene reefal carbonates still demonstrate a highly conservative behavior during diagenesis. Our study in
dicates that the initial REY parameters, such as NdN/YbN and Y/Ho ratios, are frequently preserved in Holocene 
reefal carbonates, thus offering significant support for employing ancient marine limestones as indicators of 
marine REY geochemistry. Nevertheless, prudence is advised when utilizing ΣREE contents and Ce anomaly.

1. Introduction

Modern and ancient marine carbonates incorporate rare earth ele
ments and yttrium (REY with Y, REE without Y) in proportions akin to 
those observed in ambient seawater (Luo et al., 2021; Saha et al., 2019; 
Saha et al., 2021; Webb and Kamber, 2000; Webb et al., 2009; Wyndham 
et al., 2004; Zhao and Jones, 2013). In recent years, the REY proxy in 
marine carbonates, including scleractinian corals and microbialites, has 
been used successfully for tracing marine input origins (Falcone et al., 
2022; Saha et al., 2018; Saha et al., 2019; Saha et al., 2021; Wei et al., 
2023a; Zhao and Zheng, 2014), environmental pollution (Jiang et al., 
2017; Nguyen et al., 2013; Xie et al., 2023), and palaeoceanography and 
paleoclimate (Bi et al., 2019; Della Porta et al., 2015; Jia et al., 2024; 
Jiang et al., 2019; Kamber et al., 2014; Li et al., 2019; Liu et al., 2022; 
Tostevin et al., 2016; Zhang and Shields, 2022; Zhao et al., 2021). 
Although the fidelity and robustness of modern/ancient marine 

carbonates REY proxies are empirically established, the efficacy still 
relies on the direct synsedimentary contamination degree of terrigenous 
detritus and preservation of original REY signals during subsequent 
diagenesis (Webb et al., 2009).

Direct terrigenous contamination can be identified through the 
concurrent presence of reduced mobile elements, such as thorium (Th) 
and zirconium (Zr) (Nothdurft et al., 2004; Webb and Kamber, 2000), 
and the effects of diagenesis on REY geochemistry of marine carbonates 
can be evaluated by the geochemical and mineralogical proxies for 
diagenesis alteration, such as manganese (Mn)/strontium (Sr) ratio and 
oxygen isotope (δ18O) (Derry et al., 1994; Higgins et al., 2018; Kaufman 
and Knoll, 1995). Over the last decades, the above methods have been 
extensively utilized to evaluate the preservation of original seawater 
REY signature, and most studies verifies the consistent conservative 
behavior of REY in reefal carbonates throughout a variety of diagenetic 
changes (Jia et al., 2024; Jiang et al., 2019; Li and Jones, 2014; Liu et al., 
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2022; Luo et al., 2021; Shen et al., 2023; Webb et al., 2009; Zhao and 
Jones, 2013). However, the majority of prior studies have centered on 
the pre-Holocene limestones or dolomites, which have undergone 
compaction and lithification. Furthermore, despite the inclusion of 
Holocene data in some studies, the distinctive characteristics of Holo
cene carbonates might be obscured in the whole core study, due to their 
relatively scarce data compared to Pleistocene or other geological strata.

In general, except for the dissolution and recrystallization of meta
stable carbonate minerals, the characteristics of REY in carbonates are 
expected to maintain stability over geological timescales (Zhong and 
Mucci, 1995). Therefore, the REY signatures of marine carbonates are 
always susceptible to modification during the early diagenetic stage, e. 
g., neomorphism from aragonite to calcite (Tanaka et al., 2003; Webb 
and Kamber, 2000; Webb et al., 2009), which has been considered as one 
of the most unfavorable scenarios for preserving the original REY 
signature (Webb et al., 2009). Despite the transformation of aragonite to 
calcite can also be found in pre-Holocene stratum, e.g., the Pleistocene 
scleractinian coral skeletons of Florida (Webb et al., 2009), it is more 
readily observed in Holocene strata.

Coral reefs are extensively distributed throughout the South China 
Sea (SCS) (Yu, 2012), which initiated at the late Oligocene or early 
Miocene (Fan et al., 2020; Li et al., 2023). Well CK2, drilled on an iso
lated carbonate platform in the SCS (Fig. 1), yielded core recovery rates 
averaging ~70 %, with most sections exceeding 80 %, thus providing 
highly suitable research materials dating back to the early Miocene. 
According to high-precision uranium(U)-series dating, the initiation of 
Holocene reefal carbonates, measuring 16.7 m in thickness, occurred 
approximately 7.8 thousand years before present (ka BP), while vertical 
accretion ceased around 3.9 ka BP (Ma et al., 2021; Qin et al., 2019). 
Due to the minimal terrigenous influence, the Holocene reefal carbon
ates present an exceptional opportunity for investigating the response of 
REY behavior during neomorphism. This study investigates the REY 
signatures of the Holocene stratum in Well CK2 with an aim to assess the 
impact of neomorphism from aragonite to calcite on the REY signature 
of marine carbonates. The findings will contribute towards evaluating 

marine carbonates suitability as geochemical archives for environ
mental studies.

2. Geological settings

SCS is one of the largest low-latitude marginal sea on the globe with 
an area of ~3.5 × 106 km2, originally formed due to rapid seafloor 
spreading during the Cenozoic era (Barckhausen and Roeser, 2013). The 
Xisha Islands (17◦07′-15◦43′N, 111◦11′-112◦54′E) constitute a cluster of 
atolls located on an elevated submarine plateau in the northwestern SCS, 
encompassed by seawater at depths exceeding 1 km. The Xisha Islands 
exhibit a tropical monsoon climate, characterized by an annual precip
itation ranging from 1300 to 2000 mm, an average seawater surface 
temperature ranging from 22 to 30 ◦C, and near-surface salinity levels 
ranging from 33.14 to 34.24 ‰. The carbonate platforms surrounding 
the Xisha Islands exhibited extensive development, with reef and plat
form growth displaying relatively high activity levels during the middle 
Miocene, decreasing significantly during the late Miocene, and ranging 
from moderate to active during the Pliocene and Pleistocene periods 
(Fan et al., 2020; Shao et al., 2017; Wu et al., 2014). Well CK2, drilled in 
2013 on Chenhang Island (16◦27′ N, 111◦43′ E) in the southeast of the 
Yongle Atoll, comprises a Cenozoic carbonate succession extending to a 
depth of 873.55 m, along with the volcaniclastic basement reaching a 
depth of 928.75 m. Considering the relative stability of neotectonic 
activities in the study area, as well as the fact that the reef flat of modern 
coral reefs in the SCS is predominantly situated at low tide height, and 
with Well CK2’s borehole positioned approximately 2.9 m above this 
modern reef flat, it can be inferred that originally, the top of Well CK2 
was located around 13.8 m below the low tide level of present-day sea 
(Qin et al., 2019).

Fig. 1. Locality map of Well CK2 on the Chenhang Island of the Yongxing Atoll in the Xisha Islands, northern SCS.
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3. Material and methods

3.1. Core chronology

Based on Qin et al. (2019) and Ma et al. (2021), the Pleistocene/ 
Holocene boundary of Well CK2 was determined to be located 16.7 m 
below the drilling surface. The upper 16.7 m section of the core was 
sampled to obtain 18 well-preserved Acropora spp. Specimens (Fig. S1 in 
the Supplemental Materials) to establish a comprehensive chro
nostratigraphy of the Holocene coral reef. The samples were cleaned and 
sectioned to eliminate any surface impurities, e.g., drilling mud and 
loose sediments, subjected to ultrasonic oscillation in distilled water for 
debris particle removal, dried at 50 ◦C, and finally sealed in plastic bags. 
The U-series ages of the samples were determined by the Nu plasma 
multicollector inductively coupled plasma mass spectrometer at the 
University of Queensland, enabling precise determination of isotopic 
ratios and elemental concentrations with an accuracy within ±1–2 ‰ 
(2σ) (Clark et al., 2014). The U‑thorium (Th) isotopic data and 230Th 
dates can be seen in supporting information Table S1 and 11 samples 
were selected to establish the age framework based on the order from 
the youngest to the oldest in this study after removing age reversed 
samples (Fig. 2). The determination of age framework in details is pro
vided in Ma et al. (2021).

3.2. Lithology and mineralogy

The mineral species and mass percentages were determined through 
the utilization of X’Pert PRO diffractometer according to 2θ angle and 
spectral peak intensity (Fig. S2). The lithological characteristics and 
mineralogy of Well CK2 were analyzed by conducting microscopic ob
servations on about 300 thin sections using a polarizing microscope. The 
results indicate that the core from Well CK2, spanning from 16.7 to 0 m, 
predominantly consists of a coral debris mixture containing aragonite, 
high-Mg calcite and low-Mg calcite (Fig. 3). The entire core is comprised 
of identical constituent groups, predominantly coral (Acropora spp., 
accounting for 59.35 %) and fragments of coralline algae. The obser
vation of coral, originally composed of aragonite, undergoing the 
aragonite-calcite transformation provided evidence for the existence of 
the aragonite-calcite transformation (Fig. S3).

3.3. Geochemical analysis

Geochemical analyses of the samples were conducted at the Guangxi 
University, China. 14 carbonate powder samples from relatively well- 
preserved corals collected at an interval of ~1 m from the uppermost 
~16.7 m section of Well CK2. The δ18O analysis was conducted using a 
Finnigan MAT-253 stable isotope mass spectrometer coupled with a 
Fairbanks carbonate preparation device. The isotopic ratios were pre
sented in the per mil (‰) convention and normalized to the V-PDB in 
accordance with the GBW04405 standard. Repeated measurements of 
this standard produced a standard deviation of 0.08 ‰ for δ18O. The 
carbonate samples were processed and analyzed for elemental compo
sitions using standard techniques with an inductively coupled plasma 
emission mass spectrometer. The isotopes of REY (89Y, 139La, 140Ce, 
141Pr, 146Nd, 149Sm, 153Eu, 159Tb, 160Gd, 161Dy, 165Ho, 167Er, 169Tm, 
172Yb, and 175Lu), along with other trace metals (31P, 55Mn, 57Fe, 88Sr, 
and 92Zr), exhibit distinctive signals. The levels of barium oxid and rare 
earth oxide were determined by analyzing pure elemental solutions, 
with appropriate corrections made for any potential interferences. The 
concentrations of phosphorus pentoxide (P2O5) and ferric oxide (Fe2O3) 
applied in this study were determined based on the P and Fe concen
trations. The analyzed data were assessed for accuracy and precision 
through a comprehensive quality assurance and quality control pro
gram, which encompassed the utilization of reagent blanks, duplicate 
tests, and certified geochemical reference materials (GBW07129, 
GBW07133, GBW07135) with deviations below 5 %. The detailed pro
cedures were described in Xu et al. (2019) and Jiang et al. (2019).

3.4. Interpretations for proxies

The distribution patterns of REY in Holocene carbonate samples are 
demonstrated by normalizing the REY against the standard Post- 
Archean Average Shale (PAAS) (McLennan, 1989) and plotting them 
on a logarithmic scale as a function of the atomic numbers of the 
respective elements. The XN represent the PAAS-normalized concen
trations of X, and the NdN/TbN ratio is used to represent light REE 
(LREE)/heavy REE (HREE). The Y/Ho mass ratios are computed without 
undergoing any form of normalization. Ce anomaly (Ce/Ce* = Ce/(Pr2/ 
Nd)) and Eu anomaly (Eu/Eu* = Eu × 2/(Sm + Gd)) are calculated by 
geometrically/linear extrapolating Pr and Nd, Sm and Gd, respectively.

4. Results

4.1. Lithofacies, depositional facies and mineralogy

The uppermost 16.7 m interval of Well CK2 consists predominantly 
of unconsolidated coarse sediments, comprising coral, large benthic 
foraminifera, mollusks, and coralline algae. The particle size distribu
tion is dispersed and the frequency of the particle size is not well-defined 
or abrupt, indicating a shallow seawater environment characterized by 
moderate to high energy levels. The Holocene sedimentary environment 
of Well CK2 was characterized by unconsolidated bioclastic limestone 
and coral debris.

The upper 16.7 m section of Well CK2 can be classified into three 
units based on mineral compositions (Fig. 3). Unit I (0–⁓2 m) primarily 
consists of aragonite, with minor occurrences of high-Mg calcite. In Unit 
II (⁓2–⁓10 m), the majority of primary aragonite has undergone 
transformation to high-Mg calcite within this unit. Unit III (⁓10–16.7 
m) is characterized by predominant low-Mg calcite, accompanied by 
minor amounts of aragonite or high-Mg calcite.

4.2. Elemental and isotopic geochemical characteristics

The REY proxies of the Well CK2 above 16.7 m are presented in 
Fig. 3. The Ce anomaly, Eu anomaly and NdN/YbN ratios do not exhibit 
any discernible trends except several extremes, with the respective 

Fig. 2. Calibrated U-Th age framework of the Holocene section of Well 
CK2 core.
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ranges of 0.42–1.06 (average ± standard deviation (SD): 0.65 ± 0.17), 
0.90–1.85 (average ± SD: 1.21 ± 0.25), and 0.27–0.92 (average ± SD: 
0.47 ± 0.17). A visible secular variation trend can be observed in the 
sequence of ΣREE content and Y/Ho ratios, with the respective ranges of 
0.45–2.50 ppm (average ± SD: 1.54 ± 0.64 ppm) and 43.70–88.58 
(average ± SD: 57.37 ± 13.53). All the carbonate samples have typical 
seawater REY patterns, characterized by the depletion in LREE 
compared to the HREE, superchondritic Y/Ho ratios, a slight positive Eu 
anomaly, and a negative Ce anomaly, as observed in Fig. 4.

As a typical detrital element, Zr ranges from 0.26 to 1.99 ppm, with 
an average of 0.86 ± 0.42 ppm. The Mn and Sr have the ranges of 
4.07–83.62 ppm (average ± SD: 30.98 ± 22.53 ppm) and 0.52–9.25 % 
(average ± SD: 1.41 ± 2.18 %), respectively. The P2O5 and Fe2O3 have 
the ranges of 0.04–0.15 % (average ± SD: 0.08 ± 0.03 %) and 
0.06–0.33 % (average ± SD: 0.17 ± 0.08 %), respectively. The δ18O 
values range from − 5.06 to − 2.10 ‰ (average ± SD: − 3.43 ± 0.77 ‰) 
throughout the uppermost 16.7 m interval of Well CK2.

5. Discussion

5.1. Impacts of contaminations and diagenesis

The exogenous sources, characterized by elevated REY contents and 
distinctive REY patterns, may overprint the carbonate REY signals 
(Nothdurft et al., 2004). This isolated carbonate system contained 
minimal fine siliciclastic particulates, which is consistent with the low 
ΣREE levels observed. In addition, the non‑carbonate contaminations 
were always evaluated based on several criteria, including Zr for 
detritus, Fe for Fe-Mn(oxyhydr)oxides, and P for phosphates (Nothdurft 
et al., 2004; Zhao et al., 2022). The Zr, abundant in shale (⁓210 ppm), 
occurs in concentrations ⁓0.86 ppm in carbonate samples, indicating 
<1 % shale contamination. Despite the potential influences from the 
very small amounts of shale with high REY concentrations on REY 
patterns, this possibility has been dismissed due to the lack of significant 
correlation between ΣREE and Zr (Fig. 5). Likewise, the low Fe2O3 
concentrations (<0.35 %) and absence of correlation observed in the 
plot depicting Fe2O3 concentrations against REY parameters (Fig. S4) 
suggests that Fe-Mn(oxyhydr)oxides do not exert a significant control 
over REY patterns. The P2O5 concentrations (<0.2 %) exhibit no sig
nificant correlation with the Y/Ho ratios and NdN/YbN, but they do 
display a strong correlation with ΣREE and Ce anomalies (Fig. 6). This 
suggests that phosphates, which can disproportionately incorporate REY 
and are susceptible to diagenesis alteration (German and Elderfield, 
1990; Reynard et al., 1999), account for the observed effects. Therefore, 
while the ΣREE and Ce anomalies of carbonate samples may not accu
rately reflect the primary signal, it is expected that the signals of Y/Ho 
ratios and NdN/YbN ratios may be well-preserved in these samples.

The diagenetic processes involve the early marine diagenesis, 
chemical exchange between the solid phase and pore-fluid, transforming 
metastable aragonite and high-Mg calcite into low-Mg calcite rocks 
(Higgins et al., 2018). The sedimentary composition of the area is pre
dominantly loose, with a notable lack of strong cementation. Only 
acicular aragonite cement can be observed within the interstices of 
certain coral fragments, which is commonly believed to have formed 
during the quasi-simultaneous period in a marine environment and 
likely shares similar REE chemical characteristics with seawater 
(Sholkovitz and Shen, 1995; Webb et al., 2009). Meanwhile, early 

Fig. 3. Mineral compositions (ARA: aragonite; HMC: high-Mg calcite; LMC: low-Mg calcite) and REY profiles from the top ~16.7 m section of Well CK2 core.

Fig. 4. The PAAS- normalized REY patterns of surface seawater samples from 
SCS and carbonates in the Well CK2 (0–16.7 m). The REY curve represented the 
average ± standard deviation. The data of SCS seawaters is from Alibo and 
Nozaki (2000).
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marine diagenesis has been reported not to invalidate the utility of 
shallow-marine carbonates as proxies for the seawater chemistry (Wei 
and Zhang, 2024). Therefore early marine diagenesis can not affect the 
behavior of REY. The mineralogy (%) exhibits a poor correlation with 
the REY parameters (Fig. 7), indicating that the stabilization of the REY 
patterns of neomorphic calcites during the diagenetic processes 
(Frimmel, 2009; Webb and Kamber, 2000; Webb et al., 2009). From the 
view of geochemistry, the majority of diagenetic fluids typically exhibit 
low Sr concentrations and high Mn concentrations (Kaufman and Knoll, 
1995). Additionally, meteoric fluids are characterized by isotopically 
depleted δ18O values (Derry et al., 1994). The commonly employed 

thresholds for assessing the preservation of primary signals are about 1 
for Mn/Sr ratios and − 10 ‰ for δ18O values (Higgins et al., 2018). In the 
carbonate samples, the δ18O results varied between − 5.06 ‰ and −
2.10 ‰, with an average of − 3.43 ‰, all surpassing the lower limit of 
− 10 ‰. Meanwhile, the δ18O values exhibit weak correlations with both 
the ΣREE and Y/Ho ratios across various sedimentary facies. Likewise, 
the Mn/Sr ratios ranged from 0.0005 to 0.0141, with an average value of 
0.0036, significantly below the threshold of 1. The correlation between 
the Mn/Sr ratios and Y/Ho ratios is found to be poor, whereas a sig
nificant association between the Mn/Sr ratios and ΣREE can be observed 
(Fig. 8).

Fig. 5. Co-variation plots of REY parameters against Zr in the top ~16.7 m section of Well CK2 core.

Fig. 6. Co-variation plots of REY parameters against P2O5 in the top ~16.7 m section of Well CK2 core.

W. Jiang et al.                                                                                                                                                                                                                                   
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Considering the significant correlations among Mn/Sr ratios, P2O5, 
and ΣREE (Figs. 6 and 8), we inferred that the phosphates were affected 
by diagenetic alteration, resulted in the variations in ΣREE (German and 
Elderfield, 1990; Reynard et al., 1999). In fact, there are a certain 
amount of phosphates, such as microbialites containing phosphate, fish 
teeth and bones, crustacea, lingulata etc., in the Holocene sediments, 
and P could also be bound to the carbonate grains (Dodd et al., 2021; 
Monbet et al., 2007; Ning et al., 2020). Furthermore, it is plausible that 
the recrystallization process of apatite contributes to the reenrichment 
of REY (Liu et al., 2023). The weak correlation between P2O5 and Ce/ 

Ce* is likely transmitted from the strong negative correlation observed 
between ΣREE and Ce/Ce* (r = 0.67, p < 0.01).

5.2. REE behavior during neomorphism

In comparison to the overlying aragonite, the neomorphic calcite 
seems to exhibit distinctive characteristics (Fig. 3), including an 
increased ΣREE concentration, a heightened negative Ce anomaly, and 
an augmented depletion of light REE (lower NdN/YbN ratios), aligning 
with the REE parameters observed in Pleistocene scleractinian coral 
skeletons during meteoric diagenesis (Webb et al., 2009). Despite the 
weak correlation between ΣREE and mineralogy, a visible increase in 
REE concentration is observed from aragonite to calcite (Fig. 3). The 
majority of REY seem to be preserved through neomorphism, and the 
neomorphic calcite samples exhibit higher REY levels compared to 
aragonite (Fig. 3), albeit with predominantly similar PAAS-normalized 
patterns (Fig. 4). One hand, Webb et al. (2009) suggested that: (i) dur
ing the dissolution of calcite, the REY released are promptly sequestered 
by the adjacent deposited calcite; and (ii) upon the complete dissolution 
of marine limestone, the REY released will subsequently be sequestered 
by the newly formed calcite cement, leading to a slight enrichment of 
these elements within the new calcite. On the other hand, in comparison 
to the interactions between fluids and aragonite, the REY exhibit high 
distribution coefficients between calcite and diagenetic fluids, along 
with a strong tendency to bind to the surfaces of carbonate structures, 
which may result in the sequestration of REY during neomorphism 
(Lakshtanov and Stipp, 2004; Stipp et al., 2003). In general, the 
empirical distribution coefficients of REY between aragonite coral 
skeletons and fluids typically fall within the range of 1 to 5 (Akagi et al., 
2004; Sholkovitz and Shen, 1995; Wyndham et al., 2004). Despite the 
empirical and experimental evidences are contradictory concerning 
calcite (Scherer and Seitz, 1980; Tanaka and Kawabe, 2006; Webb and 
Kamber, 2000; Zhong and Mucci, 1995), the REY partition coefficients 
between fluids and calcite exhibit significantly higher values (e.g., 2.5 to 

Fig. 7. Co-variation plots of REY parameters against mineral compositions in the top ~16.7 m section of Well CK2 core.

Fig. 8. Co-variation plots of REY parameters against Mn/Sr ratios and δ18O 
values in the top ~16.7 m section of Well CK2 core.
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10 (Terakado and Masuda, 1988), ~100 (Scherer and Seitz, 1980), 
~300 (Toyama and Terakado (2019); Webb and Kamber, 2000)) 
compared to those observed between fluids and aragonite in equivalent 
experiments. Considering that the vast majority of samples, initially 
composed of aragonite, have now transformed into high-Mg calcite and 
low-Mg calcite, it is likely that the relatively higher ΣREY content in 
these carbonates can be attributed to their diagenetic processes. Despite 
the significant changes in ΣREE concentrations, the calcite REY patterns 
were retained largely intact due to proportionably scavenging of REY 
during the neomorphic calcite precipitation (Stipp et al., 2003) and the 
low levels of fluid REY concentrations.

Direct contamination by particulate matter and the dissolution of 
microbialites can also increase REY concentration (Cabioch et al., 2006; 
Webb et al., 2009; Webb and Kamber, 2000). Overall, the selective 
uptake of LREE by particulate matter could explain the nearly flat dis
tribution and the minimal negative Ce anomaly (Webb et al., 2009). 
Obviously, the relatively low NdN/YbN ratios and well-developed 
negative Ce anomalies of neomorphic calcites (Fig. 3) ruled out the 
possibility of particulate matters. Reefal microbialites represent the 
advanced stage of encrustation on deceased coral colonies or, more 
commonly, on related encrusting organisms, thereby forming surface 
crusts (Camoin et al., 2006). Microbialites are commonly found within 
cavities of coral frameworks (Heindel et al., 2012) and have been 
demonstrated to contemporaneously develop alongside reef frameworks 
or slightly postdate associated corals by a few centuries (Webb and Jell, 
2006; Westphal et al., 2010). As a feature of rapid sea-level rise and 
abrupt climatic changes, microbialites have been identified widespread 
development in the Holocene and modern reefs in the South China Sea 
(Gong et al., 2017; Heindel et al., 2012; Shen and Wang, 2008; Teng and 
Shen, 2008; Yang et al., 2023; Zhang et al., 2022). Reefal microbialites 
contain REY in higher concentration than corals (Webb and Kamber, 
2000), thus enhancing testability to facilitate precise value assessment 
and providing robust seawater REY proxies for ancient reefs and car
bonate platforms (Kamber and Webb, 2001; Kamber et al., 2014; 
Nothdurft et al., 2004; Olivier and Boyet, 2006). The dissolution of 
microbialite would not only result in an increased concentration of REY 
in pore fluids but also introduce an increasing negative Ce anomaly 
(Cabioch et al., 2006; Webb and Kamber, 2000). Therefore, we hy
pothesize that the microbialites, which exhibited sensitivity to diage
netic alteration, may account for the strong associations observed 
between ΣREE and Ce anomaly (r = − 0.67, p < 0.01), as well as the 
correlation between ΣREE and Mn/Sr ratio (Fig. 8). It’s worth noting 
that the growth of microbialites is typically succeeded by the formation 
of phosphatic‑iron‑manganese crusts, with phosphatic films frequently 
interlayering with microbial laminae on the external surfaces of the 
crusts and coating borings within both the microbialite and underlying 
red algal-foraminiferal encrustations (Camoin et al., 2006). Therefore, 
the microbialites containing phosphate might explain the significant 
correlations among P2O5, ΣREE and Ce anomaly (Fig. 6 and S2).

The reduction in LREE depletion in carbonates is thought to result 
from several factors, including the influences of terrigenous inputs 
(Nothdurft et al., 2004; Webb et al., 2009), variations in depositional 
settings (Kamber and Webb, 2001), and/or differences in diagenetic 
histories (Mazumdar et al., 2003). The NdN/YbN ratios, however, exhibit 
no discernible variations with respect to the diagenetic indices and 
mineral compositions (Fig. S5), implying that diagenesis exerted negli
gible influence on the depletion of LREEs. Salas-Saavedra et al. (2022)
reported that reefal microbialit-hosted REY distributions (NdN/YbN and 
Y/Ho ratio) were consistent with shallow oxygenated seawater, and 
might provide high-quality proxies for ambient water quality. However, 
Mazumdar et al. (2003) proposed that the basicity of pore fluids in both 
the unsaturated and saturated zones, which increases due to organic 
matter degradation, facilitates the incorporation of HREE into the car
bonate lattice. The transformation of aragonite and/or high-Mg calcite 
into low-Mg calcite potentially occurred within a mixed freshwater and 
seawater environment (MacNeil and Jones, 2003). Nevertheless, the 

limited depletion of LREE and the absence of any observed correlation 
between NdN/YbN ratios and diagenetic indices in carbonates may 
suggest negligible effects of meteoric processes throughout the trans
formation of aragonite and calcite. Actually, meteoric diagenesis does 
not invariably obscure the geochemical signature of primary carbonate 
minerals (Wei et al., 2023b). In this study, the NdN/YbN and Y/Ho ratios, 
which demonstrate limited correlations with both diagenetic alteration 
and non‑carbonate contamination indexes, should be preserved as the 
primary REY signature during the neomorphism processes.

5.3. Interpretation of REY patterns

The Holocene carbonate REY patterns are characterized by (1) pos
itive La anomalies, (2) negative Ce anomalies, (3) LREE depletion 
relative to HREE, and (4) superchondritic Y/Ho molar ratios (Fig. 4), 
similar to those found in other Quaternary marine carbonates (Jia et al., 
2024; Luo et al., 2021; Webb and Kamber, 2000; Webb et al., 2009) and 
modern seawater in the South China Sea (Alibo and Nozaki, 1999, 
2000). The Eu anomalies of most samples vary within the typical range 
of seawater (0.9–1.5) (Tostevin et al., 2016), and exhibit no clear trend. 
However, subtle distinctions exist among the REY patterns of the three 
units in terms of their Ce anomalies, NdN/YbN and Y/Ho ratios. All the 
Holocene carbonate samples exhibited negative Ce anomalies (Fig. 3). 
Tanaka et al. (2003) suggested that the Ce/Ce* of carbonates might 
indicate the depth of the seawater where the initial diagenetic processes 
occurred. The Ce/Ce* ratios of carbonates are consistent with those of 
modern surface seawater (Alibo and Nozaki, 2000), suggesting the 
presence of an oxygen-rich environment during their formation. The 
predominant process responsible for negative Ce anomalies in seawater 
is the oxidation of dissolved Ce(III) to particulate Ce(IV), associated with 
redox. Despite the possible influence of phosphates, the Holocene car
bonate samples still exhibit the oxidation characteristics inherent to the 
original surface seawater.

Excluding the potential influences of mineralogy (Webb et al., 2009) 
and diagenesis (Azmy et al., 2011; Tanaka et al., 2003) on REY in car
bonates, the variations in the NdN/YbN and Y/Ho ratios should primarily 
reflect the composition of the seawater during carbonate formation 
(Azmy et al., 2011). The observed variations in the NdN/YbN ratios of 
carbonates are likely attributed to fluctuations in the REY composition 
of seawater, as carbonates solely acquire REY from the surrounding 
seawater. The NdN/YbN ratios exhibit an increasing trend with depth in 
contemporary seawater (Alibo and Nozaki, 1999, 2000). Nonetheless, 
the gradual rise in NdN/YbN ratios with depth cannot be exclusively 
linked to differences in the initial depositional settings, since all the 
carbonates were formed in shallow marine environments. As a result, 
the recorded increase in NdN/YbN ratios with depth (Fig. 3) could 
indicate a long-term shift in the REY composition of seawater. The NdN/ 
YbN ratio, indicative of LREE depletion, is consistently attributed to the 
preferential affinity of LREE towards scavenging processes prevalent in 
seawater (Wyndham et al., 2004). However, many factors including the 
continental weathering inputs (Akagi et al., 2004; Caetano-Filho et al., 
2018; Saha et al., 2019; Wyndham et al., 2004) and mineralization and 
desorption processes occurring on the biogenic particles (Li et al., 2019) 
may influence the LREE depletion of seawater. Compared with modern 
seawaters in the SCS, the LREE depletion of carbonate samples are all 
within the range of surface seawater (Alibo and Nozaki, 2000). 
Considering the narrow range (0.27–0.92), the NdN/YbN ratios of Ho
locene carbonate might represent the secular change of LREE depletion 
of surface seawater in the open ocean, rather than being influenced by 
other impact factors.

Nozaki et al. (1997) proposed that Y and Ho exhibit relatively short 
residence times in the marine environment, with their fractionation 
primarily governed by scavenging processes associated with the 
complexation of Y and Ho on particles. The Y/Ho ratios are highest in 
open ocean settings, exceeding 44; they are intermediate in restricted 
marine environments, ranging from 25 to 44; and lowest in freshwater 
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systems and shale deposits, below 25 (Nozaki et al., 1997; Tostevin 
et al., 2016). The Y/Ho ratios of all samples, which are consistent with a 
seawater origin (Alibo and Nozaki, 2000), exhibit depth-dependent 
variations (Fig. 3). Overall, the Y/Ho ratios in surface seawater are 
primarily influenced by continental inputs and local oceanographic 
processes (Mazumdar et al., 2003). The Y/Ho ratios of Holocene car
bonate samples fall between those of open ocean water and shale/ 
freshwater (Nozaki et al., 1997; Tostevin et al., 2016), indicating a blend 
of terrigenous materials and oceanic seawater. In fact, the reef carbonate 
Y/Ho ratio has been utilized as reliable proxy for enhanced terrigenous 
inputs in the South China Sea (Jia et al., 2024). According to Fig. 3, our 
findings indicate an overall declining trend in terrigenous inputs over 
time.

6. Conclusions

We have conducted a REY analysis of a Holocene reef core in the 
Xisha Islands, northern SCS. Our findings suggest that Holocene reef 
carbonates preserve certain original REY signatures, such as NdN/YbN 
and Y/Ho ratios, derived from the surface seawater in which they 
formed, provided that they experience minimal terrigenous input and 
diagenetic alterations. Despite the REY parameters and patterns are 
consistent with those observed in other Holocene carbonate cores/corals 
in the SCS, the ΣREE contents should be impacted by both neomorphism 
and phosphates. In addition, the Ce anomaly variations were associated 
with the phosphates. We inferred that the reefal microbialites, which 
exhibited sensitivity to diagenetic alteration, might be responsible for 
the variations of ΣREE contents and Ce anomaly during the neo
morphism. Hence, we postulate that the NdN/YbN and Y/Ho ratios of 
Holocene reef carbonates can serve as crucial indicators for under
standing paleoceanography. However, caution is necessary when using 
ΣREE contents and Ce anomaly for analysis.
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