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Abstract

The gut microbiota represents a critical yet underexplored “second genome” in the host that functions as a key driver of pollutant
transformation across Earth’s ecosystems. This review synthesizes the current understanding of over 490 pollutants across a wide
range of species, highlighting the universal role of gut microbial communities in modifying pollutant exposure. We have demonstrated
that gut microbial communities transform a broad spectrum of environmental pollutants through evolutionarily conserved pathways,
fundamentally altering their bioavailability, fate, and toxicity potential within the host. Transformation reactions are elucidated with
connections among the metabolic enzymes that are developed by specific gut microbes, emphasizing the markedly specific and
complementary signatures of microbial biotransformation compared to the host process. By integrating multidisciplinary studies, the
complex and dynamic interplay between the gut microbiota, host physiology, and environmental pollutants has been elucidated, and
drivers involved in the biotransformation processes have been proposed. Furthermore, current methodologies are critically evaluated,
and next-generation approaches to reveal the underlying mechanisms of gut microbiota-driven pollutant transformation are outlined.
This review underscores the urgent need to systematize research on “pollutant-gut microbiota-host” interactions and advocates the
integration of gut microbial perspectives into interdisciplinary research paradigms of toxicology, microbiology, and ecology.
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Introduction

Environmental pollutants pose unprecedented challenges to
ecosystems and human health in the Anthropocene [1]. While
traditional toxicology has focused primarily on direct host-
pollutant interactions, emerging evidence reveals a critical
yet underexplored driver in environmental toxicology: the gut
microbiota. The gut microbiota, which can be found in virtually
any metazoan, from invertebrates to vertebrates, serves as a
crucial interface between environmental exposure and biological
responses [2]. This complex microbial ecosystem, which com-
prises trillions of microbes with > 150-fold more genes than their
host [3, 4], performs functions including resistance to pathogens,
regulation of the immune system, fermentation of nondigestible
dietary fibers, anaerobic metabolism of peptides and proteins,
interaction with the circadian rhythm, and biotransformation of
xenobiotics [5, 6]. There is now growing recognition that the gut
microbiota functions as an “external” organ for the host [7, 8].

In recent years, the “game-changing potential” of the gut micro-
biota with respect to its effects on the mode of action (MOA) and
the absorption, distribution, metabolism, and excretion (ADME) of
pollutants have since shaped the ecological and environmental
toxicology. The gut microbiota acts as the first physical and
biological barrier against environmental pollutants from the diet
as it resides at the site of exposure. Environmental pollutants,
such as antibiotics [9], heavy metals [10, 11], persistent organic
pollutants (POPs) [12, 13], pesticides [14-16], nanomaterials [17,
18], and other emerging pollutants [19], strongly influence the
structure and activity of the gut microbiome. The gut-“X" axis of
the gut is considered an important target of pollutant toxicity,
such as intestinal injury [20], hepatic diseases [21], metabolic
disorders [22], immune perturbations [23], and behavioral and
neurochemical alterations [24, 25]. In addition, the gut microbiota
harbors diverse enzyme families with xenobiotic-transformation
potential, which function as modifiers of pollutant exposure in
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organisms. Many recent cutting-edge and innovative efforts in
toxicology have made great strides toward gut microbiota-driven
pollutant transformation in organisms ranging from invertebrates
tohumans [5, 26-28]. The gut microbiota has been revealed to play
an important role in the biotransformation of pollutants, and dif-
ferent chemical transformation modes and toxicity modifications
associated with the hepatic process have been described [29].
Overall, research on the gut microbiota has spurred a paradigm
shift from focusing solely on host-level consequences to adopting
a more integrative toxicological approach that emphasizes host-
microbiota symbiosis as a key determinant of pollutant-induced
adverse outcomes.

Over the past few years, the impact of environmental pollu-
tants on the gut microbiota, together with induced host toxi-
cology, has been described in various recent reviews [7, 19, 28,
30, 31]. Although some reviews have summarized the available
information on pollutant biotransformation by the gut microbiota
[5, 26-28, 32-35], most have focused primarily on the human
gut microbiota as a major target. Globally, mechanistic and crit-
ical reviews of gut microbiota-driven pollutant transformation
grounded in the “One Planet, One Health” concept (encompassing
the multidisciplinary links among planet, human health, and ani-
mal health) are still lacking. Many recent cutting-edge and inno-
vative efforts in toxicology have made great strides toward gut
microbiota-driven pollutant transformation in organisms ranging
from invertebrates to humans [5, 26-28], covering: (i) potential
candidate microbes and their transformation activities; (ii) trans-
formation kinetics, pathways, and mechanisms of target pollu-
tants; and (iii) changes in pollutant bioavailability and toxicity
during microbial transformation. Pollutant transformation by the
gut microbiota may be far more diverse and complicated than
previously believed because of the complex interplay of several
factors. The gut microbiota encompasses diverse domains of life,
including archaea, bacteria, fungi, and viruses, all of which could
contribute to pollutant transformation. Differences in the amount
and composition of the gut microbiota among species directly
affect enzyme activities, resulting in significant variation in the
effects on pollutant transformation; in contrast, pollutant struc-
tures and properties can also determine the intrinsic recalcitrance
of pollutants to microbial transformation [36]. Moreover, various
host-related factors, such as host genetics, lifestyle, diet, and
environmental stress, can also dramatically modulate microbial
capacity and efficiency in pollutant transformation [30, 37, 38].
To date, the “gut microbiota-driven transformation” is a research
gap in which specialization has been neglected and research
frequently overlooks, where the associated direct transforma-
tion modulations and the indirect modulations under “pollutant-
microbiota-host” interactions are the key issues to be addressed.

By synthesizing insights from toxicological, microbiological,
and ecological research, this review aims to provide a compre-
hensive framework for understanding how gut microbiota-driven
biotransformation shapes the impact and fate of environmental
pollutants. First, a panoramic overview of the role of the gut
microbiota in the ADME processes of pollutants is provided, and
scenarios where the gut microbiota participates in the pollu-
tant transformation are proposed. Second, specific pathways (the
enzymes involved), functional microbes, and their corresponding
effects on toxicity in gut microbiota-driven transformation are
summarized on the basis of the latest knowledge of pollutant
transformation. Third, the drivers of this gut microbial trans-
formation distribution are analyzed from the basic perspective
of “pollutant—gut microbiota—host” interactions. Finally, method-
ological advances in the study of gut microbial transformation

are presented, and key issues that should be addressed in the
future are suggested. This timely and essential review of gut
microbiota-driven transformation will not only advance scientific
understanding but also facilitate the development of more accu-
rate risk assessment models and innovative strategies to miti-
gate the ecological and human health impacts of environmental
pollution.

A brief overview of gut microbiota-driven
transformation and its influence on
pollutant absorption, distribution,
metabolism, and excretion (ADME)
processes

The ADME processes determine the internal exposure and toxic
action of pollutants within the body. Among these factors, host-
gut microbiota cooperative transformation is recognized as both
the most influential and the least understood factor (Box 1A).
Due to their distinct physiological and enzymatic properties, the
host (particularly the liver, a primary site of chemical transfor-
mation) and the gut microbiota often exhibit divergent, or even
opposing, capabilities in metabolizing pollutants. As a highly
vascularized organ with a constant oxygen supply, the liver pre-
dominantly facilitates detoxifying transformation through the
action of cytochrome P450 monooxygenases (CYPs), hydrolases,
and conjugating enzymes [39, 40]. In contrast, much of the gut of
large animals are located in reducing environments, where the gut
microbiota cannot rely on oxygen as the terminal electron accep-
tor for respiration [41]. In general, hepatic transformation tends
to exhibit broad substrate specificity, whereas the gut microbiota
is capable of mediating a wide array of metabolic reactions,
including reductive and hydrolytic processes [42].

In humans and other vertebrate animals with a complete
digestive system, pollutants can encounter the gut microbiota
through various pathways. Once absorbed by the gastrointesti-
nal (GI) tract, the ingested pollutants often undergo “first-pass
metabolism (presystemic metabolism)” by the host's enzymes
and microbial enzymes before they reach the systemic circula-
tory system. Hepatic metabolites in the circulation may also be
excreted via the bile back to the gut lumen and reprocessed by
the gut microbiota [4, 26], where the subsequent deconjugation
of the excreted phase II metabolites can result in “enterohep-
atic circulation” of chemicals in the body. Invertebrates possess
a simple digestive system (a simple tube of enterocyte cells)
harboring the gut microbiota [44], often resulting in a relatively
simple host—gut microbiota transformation process. Overall, the
host- and gut microbiota-driven transformations form a complex,
complementary, and interactive metabolic network.

The role of the gut microbiota in pollutant transformation and
the alteration of toxicokinetic and toxicodynamic properties are
closely tied to the structure and exposure route of the pollu-
tant. Briefly, gut microbiota-driven pollutant transformation in
humans and other vertebrate animals can be categorized into four
distinct scenarios (Box 1B). With respect to the susceptibility of
pollutants to microbial transformation, “first-pass metabolism”
by the gut microbiota can be considered the first barrier for
the entry of pollutants into the blood circulation system (i.e.
direct transformation). The easily absorbed and readily hepati-
cally conjugated pollutants are more likely to be reproposed by
the gut microbiota, thereby spending long periods in the systemic
circulation through this process of “enterohepatic circulation” (i.e.
indirect transformation) [4, 26]. In contrast to the previous two
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Box 1. Overview of the complex metabolic network of pollutants in the host-gut microbiota cooperative process (A) and the four
proposed scenarios of pollutant transformation with respect to the gut microbiota (B).
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There are different ADME processes for xenobiotics in the digestive system of invertebrates and high-trophic level organisms. In the complete
digestive system, orally ingested chemicals first experience the extremely acidic environment of the stomach (pH 1.5) [43], where various pH-sensitive
compounds can undergo abiotic hydrolysis and reduction reactions. Subsequently, these compounds can be jointly modified by digestive enzymes and
the gut microbiota in the small intestine and colon. They are then absorbed by the intestinal tissues and enter into circulation. Compounds in the
circulatory system can be processed by hepatic transformation and excreted via the kidneys. Bile excretion provides another opportunity for
metabolism by the gut microbiota, in which the phase Il metabolites can be transformed to the conjugated form then reabsorbed during the
“enterohepatic cycle” [4, 26]. Eventually, chemicals and metabolites that are not absorbed by the large intestine can be excreted via feces. In the simple
digestive system, host and microbial transformation processes are more likely to occur simultaneously and function together [44].
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There are four scenarios in which the gut microbiota participates in pollutant transformation: (1) the “first-pass metabolism” of ingested pollutants by
the gut microbiota; (2) the hepatic metabolites (mainly the phase II metabolites) of some pollutants in the circulatory system may also be excreted via
the bile back to the gut lumen, after which they are reprocessed by the gut microbiota; (3) some persistent pollutants cannot be degraded due to their

persistence and limited residence time in the GI tract; and (4) the gut microbiota participates in a complex and interactive process with the host.

scenarios, the gut microbiota can hardly modify rapidly absorbed
or microbe-resistant chemicals (the third scenario). In addition,
the gut microbiota mainly exerts direct effects on dietary com-
pounds. Because the exposed pollutants bypass this “first-pass
metabolism” to enter systemic circulation via another route (i.e.
inhalation, dermal intake, or intravenous injection), only the bile-
excreted proportion can be processed by the gut microbiota [26].
In real-world scenarios involving mixed pollutant exposure, host-
gut microbiota cooperative biotransformation is the most com-
mon occurrence (the fourth scenario). Consequently, ADME stud-
ies must meticulously distinguish between these distinct trans-
formation processes and account for exposure- and structure-

specific mechanisms when evaluating the role of gut microbiota—
pollutant interactions.

Universality of gut microbiota-driven
pollutant transformation

The capacity of gut microbiota to transform environmental
pollutants demonstrates remarkable universality, as shown by
a comprehensive analysis of the biotransformation of over 490
structurally diverse pollutants by animal species across 13
taxonomic groups, spanning invertebrates, fish, birds, non-human
mammals, and human. Supporting data on transformation
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pathways, functional microbes, and potential toxicity modulation
are summarized from the environmental toxicology and ecotoxi-
cology studies (Fig. 1; Table 1; Supplementary Tables S1-S6).

Substrate and reaction universality of the gut
microbial transformation
Legacy organic pollutants

Even though legacy organic pollutants including POPs possess
relatively stable chemical structures, substantial evidences have
confirmed their biotransformation by gut microbiota of humans
and rodents (Supplementary Fig. S1). For instance, dechlorina-
tion has been identified as a general reductive metabolic path-
way for a wide range of chlorinated compounds [45, 46], includ-
ing dichlorodiphenyl trichloroethane (DDT), organochlorine pes-
ticides (OCPs) such as dieldrin, lindane, and methoxychlor, as well
as polychlorinated biphenyls (PCBs). Similarly, the ester bonds
in organophosphate pesticides (OPs) and other ester-containing
raw chemicals render these compounds susceptible to hydroly-
sis by enzymes (e.g. phosphoesterases) derived from human gut
microbiota [47, 48]. Furthermore, the nitro-containing pollutants,
such as nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), can
be reduced by gut microorganisms to amino-polycyclic aromatic
hydrocarbons (amino-PAHs), thereby enhancing their mutagenic-
ity and carcinogenicity; for example, certain bacteria such as
Klebsiella sp. C1, which are isolated from humans may be involved
in this process [49, 50]. Similarly, azo dyes are susceptible to bio-
transformation by azo reductases produced by specific gut bacte-
ria, including Clostridium perfringens, Bacteroides ovatus, Enterococcus
faecalis, and Ruminococcus obeum, as well as the broader human gut
microbiota [51-53], though which generates carcinogenic aniline
derivatives. PAHs have also been reported to undergo hydroxy-
lation by CYPs from the gut microbiota [54, 55], yielding prod-
ucts with elevated estrogenicity. Furthermore, the gut microbiota-
mediated biotransformation of melamine has attracted much
attention due to the significant increase in nephrotoxicity caused
by the formation of cyanuric acid [56].

Metals

Microbial transformation of metals often involves complex
networks of redox, methylation, and thiolation reactions,
profoundly influencing their mobility and toxicity. Arsenic (As)
metabolism provides a seminal example of this metabolic
versatility, which display complex transformation networks: iAs"
can be reduced to iAs™ by sulfate-reducing bacteria (e.g. Desul-
fouibrio), subsequently methylated to monomethyl- (MMAY) and
dimethylarsinic acid (DMAVY), and thiolated to generate products
such as monomethylmonothio- (MMMTAY), dimethylmonothio-
(DMMTAY), dimethyldithioarsinic acid (MMDTAY), and dimeth
yldiothio-arsonic acid (DMDTAY) [57-59]. Human gut microbiota
can also oxidize iAs™ to iAsV [60]. Meanwhile, organic arsenic
compounds (e.g. MMAY, DMAY, AsB, and arsenic sugars) can
also be transformed by the gut microbiota through hydrolysis to
enhance their host absorption [61-63]. Critically, this capacity for
biotransformation is not unique to As; similar bacterial methyla-
tion pathways have been confirmed for other metals including Hg,
Bi, Sb, Se, and Te (Supplementary Fig. S2), highlighting a conserved
functional role across metal substrates.

Pharmaceutical and personal care products (PPCPs)

The role of the gut microbiota in pharmaceutical transformation
has long been recognized and considered in the field of
pharmaceutical design (Supplementary Fig. S3). The reductive

metabolism of pharmaceuticals represents a significant biotrans-
formation process, particularly for structurally distinct groups
such as azo (-N=N-), nitro (-NO,), alkenes (-C=C-), ketones
(-C=0), N-oxides (-N-0), and sulfoxides (-5=0). For example, the
azo drugs (mainly the digestion-related drugs) of balsalazide,
ipsalazide, neoprontosil, olsalazine, prontosil, and sulfasalazine
are intentionally designed to avoid rapid adsorption to ensure
their effective delivery to the colonic region [64]. These prodrugs
rely on azo reductases secreted by the gut microbiota for azo
bond cleavage to release active ingredients [4, 65]. Nitrazepam
can be efficiently reduced to 7-aminonitrazepam by Clostridium
leptum from human gut [66], whereas the cardiac drug digoxin
can undergo alkene cleavage by the human gut microbiota
to produce dihydrodigoxin [67]. Hydrolysis is another critical
metabolic pathway for pharmaceuticals by the gut microbiota.
For instance, Helicobacter pylori, a bacterium found in human gut,
can initially inactivate L-DOPA by decarboxylating it to generate
m-tyramine and m-hydroxyphenyl-acetic acid via hydrolase
activity [68]. Similarly, antibiotics including benzylpenicillin and
chloramphenicol can also be dealkylated by the gut microbiota to
counteract their adverse effects [69]. In addition, deconjugation
mediated by microbial g-glucuronidases and other hydrolases
can transform the detoxified pharmaceuticals (the conjugates),
such as itirican (SN38) [70], acetaminophen [71], diclofenac
[72], indomethacin [73], and triclosan [74], extending their
pharmacological or toxicological effects.

Mycotoxins

Although mycotoxins are natural fungal metabolites, they have
attracted global attention as emerging pollutants that adversely
affect human health [75]. The transformation of deoxynivalenol
(DON) into deepoxy-deoxynivalenol by the gut microbiota is an
efficient detoxifying transformation that occurs by the gut micro-
biota (Supplementary Fig. S4) [76]. In addition, hydrolysis can also
be conducted by the gut microbiota to detoxify mycotoxins, such
as ochratoxin A [77]. The sulfate and glucuronide conjugates of
mycotoxins (e.g. DON [75, 76] and zearalenone [78]) can also be
rapidly deconjugated by the gut microbiota, extending their half-
lives in the body.

Polymers and nanomaterials

A key universal mechanism for polymer biotransformation by the
gut microbiota involves enzymatic oxidative fragmentation initi-
ated by microbial oxidases (e.g. cytochrome P450 and laccases),
followed by depolymerization and assimilation. This pathway has
been demonstrated for a range of synthetic polymers, such as
polyethylene [79, 80], low-density polyethylene [81], polystyrene
[82-84], polyvinyl chloride [85], and polylactic acid [86]. These
processes ultimately metabolize polymers into monomers, low-
molecular-weight organic compounds, and the subsequent CO,
and H,O0. In addition, carbon nanomaterials have been confirmed
to be transformed into endogenous organic metabolites via anaer-
obic fermentation in the gut, incorporating inorganic carbon into
organic butyrate [87].

Other emerging pollutants

Bisphenol A and disinfection byproducts (e.g. chloroacetonitrile,
dibromoacetic acid, and tetrabromopyrrole) are transformed
in the simulator of human intestinal microbial ecosystem
(SHIME), mitigating oxidative DNA damage [88, 89]. Furthermore,
tetrabromobisphenol A and its analogs (e.g. tetrachlorobisphenol
A and tetrabromobisphenol S) can suffer debromination and
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Table 1. General mechanisms and toxicological consequences of gut microbiota-driven transformation.

Category Reaction types  General reaction mechanism Representative chemical targets Toxicology consequences
Reduction  Azo reduction Rty Azo reductase Azo-dyes and azo-antibacterial * Generate carcinogenic aromatic
§N—R — R-nHp predrugs (i.e. balsalazide analogs amines from azo-dyes;
and prontosil) ¢ Release products with efficacy
(toxicity).
Nitro reduction R Nitro reductase Nitro-PAHs, benzodiazepines ¢ Decrease toxicity of nitro-PAHs;
—NO2 > R—NHp drugs (i.e. nitrazepam, * Increase carcinogenicity of
clonazepam, and bromazepam), benzodiazepines.
and metronidazole
Alkene reduction Alkene reductase Deleobuvir and digoxin (the * Decrease efficacy (toxicity).
R—CHa<cy_g——»R—CH,—
CH—R Z~CH;—R drugs)
Sulfoxide O Sulfoxide reductase Sulfur-containing drugs (i.e. e Release products with efficacy
reduction R /S\R R/S\R omeprazole and sulfinpyrazone) (toxicity).

. R . . . . )
N-oxide m N-oxide reductase ™ N-oxide prodrug (i.e. loperamide ~ * Release products with efficacy
reduction 7 —> ‘ 7 oxide) and H2 receptor (toxicity) for the prodrug;

J antagonists (i.e. ranitidine and e Decrease the efficacy of the
nitazidine) antagonists.
Keto reduction 0 Keto reductase OH Hydrocortisone (the endocrine e Increase efficacy (toxicity) of
R )J\R — /\ drug) and zearalenone (the zearalenone.
o R mycotoxin) ¢ Increase toxicity of zearalenone.
De-epoxidation fs) Deoxygenase HO Mycotoxin (i.e. deoxynivalenol ¢ Decrease toxicity.
X —_— ;\’ \ and nivalenol)
R R R R
Dehalogenation Dehalogenase DDT, PCBs, and other e Decrease toxicity.
R—X ——» R-H organochlorine pesticides
Metal reduction Metal reductase iAsY ¢ Increase toxicity of iAs.
M —— M
Metal Metal reductase CHsHg! * Decrease toxicity and
demethylation =~ M— T » M bioavailability.
Hydrolysis  Dealkylation s i RP hosphalaseR i Ester-containing drugs (i.e. » Decrease toxicity and
\S’Z\O/ » \O/Z“OH carbetapentane citrate, ketorolac, bioavailability in most cases.
— R~
o SElfstass 0 and 'L—ADopa), orgam})lpho}slphate
- > ot-on pesticides, organophosphate
R-0 RO flame retardants and parabens
0 Esterase 8
R0 R * roH
Deacetylation & o DroneE G N- or O-acetyl chemicals and * Increase bioavailability in most
’LK ii or Deacetylase . . .
R-0~ 0T R_NH& — " R-nH, or r—on drugs (i.e. acetaminophen, cases;
formanilide, and irinotecan) and ~ ® Sometimes increase toxicity (i.e.
acetyl mycotoxins (i.e. T-2 toxin) diltiazem, irinotecan, and
spironolactone).
Deglycosylation P-Glucuronidase Conjugates of drugs, personal e Increase
=Gl > R-on care products, mycotoxins, bioavailability.
pesticides, nirto-PAHs and plastic
additive
Other GSH hydrolase Conjugates of drugs, personal e Increase
deconjugation Rl » RO care products, nirto-PAHs, and biocavailability.
2 Sulfatase pesticides
0=%~on —» R-OH
rR-C

(continued)
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Table 1. Continued.

Category Reaction types General reaction mechanism Representative chemical Toxicology
targets consequences
Functional Acetylation Acetyl transferase 0 o Some drugs (i.e. e Decrease
group removal RERE QN REGH I R_O)\or R,NHJ\ 5-aminosalicylate, bioavailability in
sulfapyridine and most cases.
sulfasalazine)
Methylthiolation Methylthiol transferase Organochlorine pesticides (i.e. e Increase
R—H ——» R—5— PCB29 and chlorothalonil) bioavailability in
o most cases.
N-dealkylation N-deacetylase Some drugs and neonicotinoid e Decrease toxicity
R—H-R P BN pesticides
Metal Metal methyltransferase As, Bi, Hg, Sb, Se, and Te  Decrease toxicity
methylation iM L and increase
bioavailability.
Metal thiolation Metal thioltransferase As and Se ¢ Decrease toxicity
M —» M-s- and increase
bioavailability.
Oxidation Hydroxylation CYp PAHs and phenol * Increase toxicity
R-H ———» R-OH (estrogenicity) and
bioavailability.
Alkyl cleavage e Plastic additives ¢ Change toxicity
R-R ——» R-0OH -
(estrogenicity) and
bioavailability.
Oxidative 243 Plastic and nanomaterials ¢ Decrease toxicity.
N {R-R], ———» R-OH
depolymerization %

glycosylation by the human gut microbiota [90, 91], whereas
microbial deglycosylation of the conjugates of these compounds
is also observed [91]. Esters can increase the susceptibility of
organophosphate flame retardants and phthalate esters to
hydrolysis by the gut microbiota [92, 93]. In addition, our previous
study on crucian carp has demonstrated that gut microbiota-
mediated alkyl-cleavage significantly alters the estrogenic effects
of bisphenol A and its analogs [94].

Overall, the gut microbiota-driven pollutant metabolic reac-
tions generally include the following: (i) reduction (e.g. alkene
reduction, azo reduction, de-epoxidation, dihydroxylation, dehalo-
genation, enoate reduction, hydrazine cleavage, keto reduc-
tion, nitro reduction, N-oxide reduction, and sulfoxide reduc-
tion); (i) hydrolysis (e.g. deacylation, dealkylation, deamida-
tion, decarboxylation, deconjugation, proteolysis, and thiazole
ring-opening); (iil) functional group removal (e.g. acetylation,
methylthiolation, N-dealkylation, and transamination); and (iv)
oxidation. The extensive transformation of diverse environmental
pollutants demonstrates the broad substrate diversity inherent
to the gut microbiota metabolic capabilities.

Cross-species universality of the gut microbial
transformation

Reduction reactions are widely prevalent microbial-mediated
transformation processes for pollutants across 13 taxonomic
groups (Fig. 1B). The metabolism mediated by the gut microbiota
is widely regarded as a response-modifying process that reflects
the energy demand of gut microbes [95]. Most of the gut parts

of large animals are in reducing environments, and as a result
the gut microbiota in the intestine cannot utilize oxygen as the
terminal electron acceptor for respiration [41]. Consequently,
in contrast to oxidation, which ranks first in host metabolic
processes, the redox potential in the intestine is suitable for gut
microbes because it transfers hydride equivalents or electrons
(H* and 2e™) to substrates [5, 26, 27]. For example, dehalogenation
reactions of halogenated organic compounds (primarily classified
as POPs) have been widely observed in the guts of various species,
including humans [46], rodents [45], earthworms [96], and apple
maggots [97]. Parallel transformation conservation occurs for
metal reduction. In studies of fish, rodents and humans, both
the reduction and methylation could be mediated by the gut
microbiota to inorganic and organic arsenic (iAs and 0As), encom-
passing the reduction, methylation, and thiolation pathways [61-
63, 98, 99]. This metabolic versatility extends to the invertebrates’
gut microbiota, where the Escherichia coli. From earthworm gut
(Eisenia foetida) can reduce and methylate As [100]. Mycotoxin’s
detoxifying transformation further demonstrates cross-species
conservation: reductive pathways efficiently transform DON, HT-
2, nivalenol, verrucarol, and T-2 toxins in fish [101], chickens [102,
103], pigs [104], and humans [76].

Hydrolysis and functional group removal reactions are impor-
tant mechanisms through which the gut microbiota participates
in host energy metabolism; these two reactions can produce
simple molecules that can be used for energetic purposes with-
out relying on oxidants [26, 105]. For endosulfan, a special OCP
with a sulfate group, endosulfan diol has been confirmed as a
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microbial triphenyl produced through hydrolysis by Rhodococcus
found in earthworms [106]. The plasticizers with esters (e.g. di(2-
ethylhexyl) phthalate and tri(2-butoxyethyl) phosphate) undergo
hydrolysis by specific gut microbes from earthworms [92, 93]
and fish [94], and the hydrolysis of OPs occurs exclusively in
various mammals and invertebrates [107-109]. Deconjugation is
also a widespread and highly efficient hydrolysis reaction that
occurs across species (including humans [4, 70, 91, 110], other
mammals [111, 112], fish [113], prawns [113], and mussels [113])
and across diverse xenobiotic classes, such as drugs, POPs, myco-
toxins, and plasticizers. These reactions, which typically proceed
rapidly, highlight the microbiota’s inherent and host-independent
capacity to transform conjugated compounds, regardless of spe-
cific host-microbiota interactions. In addition, N-dealkylation (the
functional group removal reaction) can be rapidly conducted for
pharmaceutical neonicotinoid pesticides or by the gut microbiota
of worms and mammals [3, 114].

Evidence of pollutant oxidation reactions that are driven by
the gut microbiota has also been reported from invertebrates to
vertebrates, although oxidation reactions are typically oxygen-
sensitive and require a significant amount of energy. In inverte-
brates, the relatively simple gut structure of invertebrates allows
higher oxygen availability in their gut environment, thereby facil-
itating oxidative reactions [115, 116]; in contrast, vertebrate gut
systems contain more anoxic gut environments, but CYP enzymes
are highly abundantin several facultative anaerobic bacteria [117,
118]. For example, the ability of the gut microbiota to transform
various plastics was discovered in studies based on earthworms
[81], mealworms [83], superworms [84, 116], other invertebrates
[119-121], and the mammals [122]. The facultatively anaerobic
and strictly aerobic bacteria are ubiquitous in the gut may pro-
mote oxidation under both anoxic and oxic conditions [115, 116].

Although the gut microbiota across species shares a univer-
sality for the general pollutant transformations, species-specific
differences in final outcomes often arise due to the simulta-
neous operation of diverse and intricate microbial transforma-
tion processes. For example, in earthworms, the gut microbiota
primarily mediates the methylation of inorganic mercury (iHg)
into methylmercury (MeHg), with sulfate-reducing bacteria (e.g.
Desulfovibrio) serving as the key methylators [123]. In contrast,
studies on fish have shown that while their gut microbiota can
simultaneously drive both the methylation and demethylation
of Hg [124, 125], where the demethylation process appears to be
more efficient. Collectively, these cross-species examples illus-
trate conserved functional roles of the gut microbiota in pollutant
transformation, serving as a critical modifier against environmen-
tal pollution.

General toxicological consequences of gut
microbial transformation

Transformation processes driven by the gut microbiota have
attracted much attention because they can significantly alter
the bioavailability (pharmacokinetic parameters) of certain
pollutants and induce changes in their toxicological effects
(Table 1) [5, 7, 28]. The reduction reactions generally convert
chemicals into more water-soluble metabolites and facilitate their
excretion from microbial cells, but the toxicological outcomes
are dependent on substrate specificity [26]. For example, nitro
reduction generates amine metabolites with weak toxicity, and
azo reduction generally induces compound carcinogenicity. The
hydrolysis of the pollutant itself markedly reduces host exposure,
whereas the deconjugation of the pollutant metabolites results in
the reactivation of pollutants and increases their bioavailability in

the gut (Table 1). In functional removal reactions, the installation
or removal of specific groups can also affect the bioavailability
and toxicity of pollutants. For example, the acetylation of pollu-
tants (e.g. 5-aminosalicylate and sulfapyridine) has been shown
to reduce toxicity (or efficacy) [126], whereas the methylation of
heavy metals may increase their bioavailability and toxicity [127].

To date, few toxicokinetic studies have assessed the role of
the gut microbiota in pollutant transformation and its combined
impact on host metabolism. A bioavailability study of disinfection
byproducts via SHIME revealed that ~ 60% of chloroacetonitrile,
45% of dibromoacetic acid, and 80% of tetrabromopyrrole under-
went abiotic transformation in the stomach and small intestine.
Subsequent transformation of the remaining compounds occurs
in the colon, facilitated by the gut microbiota, underscoring the
pivotal role of gastrointestinal transformation in the toxicology
of these orally ingested pollutants [89]. Research has confirmed
that the gut microbiota’s efficiency in reducing nitrazepam to 7-
aminonitrazepam is seven times greater than that of the liver [66].
A recent study utilizing a GF rat model for the global analysis of
the physiological toxicokinetics of brivudine (a pharmaceutical)
reported that 70% of the compound’s transformation could be
attributed to microbial processes [29]. In addition, a toxicokinetic
model demonstrated that the gut microbiota contributed 44.0%
and 18.4% to the metabolism of total and inorganic arsenic,
respectively, in zebrafish [99]. However, current toxicokinetic stud-
ies remain insufficient in fully characterizing the contribution
of the gut microbiota to pollutant ADME, thereby limiting the
toxicological understanding of the microbiota’s role in the context
of pollutant exposure. Given the variable metabolic activity of
the gut microbiota toward different pollutants and their inherent
variability, this contribution is influenced by multiple factors,
necessitating careful interpretation of existing data or context-
specific application. Advanced models that integrate environ-
mental complexity are imperative for evaluating the long-term
toxicological impacts of gut microbiota-driven pollutant biotrans-
formation in real-world exposure scenarios.

Major factors driving the gut microbial
biotransformation

The intricate interplay among pollutants, the gut microbiota, and
host physiology underscores the complexity of gut microbiota-
driven pollutant transformation. To systematically deconstruct
this complexity, our analysis progresses across three tiers: (i)
pollutant structural and toxicological determinants of microbial
susceptibility, (ii) the enzymatic machinery across bacterial phyla
and their metabolic interplay with hosts, and (iii) host-specific
modulators shaping microbial catalysis. This tripartite framework
offers a unified perspective on how microbial pollutant trans-
formation emerges from the confluence of chemical properties,
microbial ecology, and host biology.

Pollutant effects on microbial transformation

The biotransformation potential of a chemical largely depends
on its intrinsic structure and properties, which determine its
resistance to transformation and ability to interact with specific
enzymes [32, 36]. Multidimensional scaling clustering was
employed to categorize the chemicals into groups of structurally
similar compounds (SI-1; n=125; Supplementary Table S7).
This similarity-based clustering yielded 63 distinct clusters. To
streamline the subsequent analysis, all clusters containing fewer
than three molecules were consolidated into a single cluster,
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Figure 1. Distribution of pollutant biotransformation by gut microbes from mammals and non-mammal fauna. (A) Consensus evidence of
pollutant-microbe-reaction triad can be found in Supplementary Tables S1-Sé. (B) Diversity of transformable pollutants and reaction types across 13
taxonomic groups. The size of the circles represents in the left the number of transformable pollutants for a particular category on the left. The
symbols on the right indicate whether a certain reaction was reported for the gut microbial transformation within a certain taxonomic group.
Organisms categorized as follows (top to bottom): other invertebrates, diptera insects, worms, fish, chickens, horses, cattle, sheep, pigs, dogs, rabbits,
rats, and humans. Abbreviations: OPs, organophosphate pesticides (OPs); NPAHs, nitrated polycyclic aromatic hydrocarbons; POPs, persistent organic

pollutants; PPCPs, pharmaceuticals and personal care products.

designated Cluster 14 (Supplementary Fig. S5A). Consequently,
certain clusters could be associated with specific transformation
pathways (Supplementary Fig. S5B). Clusters 8, 10, and 12 are
readily distinguishable by the presence of an azo group. The
azo group is a key structural feature conducive to specific azo
reduction reactions. For the compounds in Clusters 1 and 4, which
encompass majority of nitro-PAHs, nitro reduction emerges as the
most prevalent transformation reaction. In Cluster 1, chemicals
lacking specialized functional groups are more likely to undergo
oxidation or the removal of functional groups. Epoxy-containing
compounds in Cluster 2 trigger de-epoxidation reaction, whereas
halogenated compounds in Cluster 3 undergo dehalogena-
tion. The Phase II conjugates in Clusters 9 and 13 primarily
undergo glycosyl or glucuronosyl cleavage. Chemicals in Clusters
5, 6,and 11, which possess C-O, C-N, C-S, or ester bonds, are prone

to hydrolysis reactions, including dealkylation and deacylation,
as well as N-dealkylation. Overall, this analysis indicates that
pollutant transformation by the gut microbiota is highly structure
specific. Certain substructures, such as glycosidases-related
groups, esters, nitro, azo, alkene, keto, N-oxide, sulfoxide, and
epoxy substructures, increase the susceptibility of pollutants to
microbial transformation.

Pollutants can exert dose-dependent constraints on biotrans-
formation via direct toxicity to the gut microbiota. Antibiotics,
as the most disruptive pollutants, can induce acute microbial
suppression, compositional shifts, and metabolic capacity
changes [128, 129]. Similarly, exposure to non-antibiotic, including
pharmaceuticals and environmental chemicals, may disrupt
enzymatic pathways (e.g. azoreductases and g-glucuronidases)
critical for pollutant transformation, leading to the accumulation

GZ0Z 1290190 | uo Jasn Aseiqi] ABojouyos ] g eousing [euoneN Aq £/589Z8/S | ZIBIM/L/6 | /ajone/fewsljwoo dnoolwepese//:sdiy woll papeojumod


https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wraf215#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wraf215#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wraf215#supplementary-data
https://academic.oup.com/ismej/article-lookup/doi/10.1093/ismejo/wraf215#supplementary-data

10 | Houetal.

of toxic intermediates and compromised detoxification [130].
Polybrominated biphenyls (BDE-209) and perfluorooctane sul-
fonate reduce microbial diversity and short-chain fatty acid
production in both carp and infants [131, 132], whereas digoxin
enhances reductase activity and pollutant transporter expression
[130]. Furthermore, exposure to dioxins and heavy metals has
been linked to increased microbial transformation (and/or resis-
tance) genes, as demonstrated by shotgun metagenomic analysis
of 359 Italian subjects across contamination gradients [133]. This
transformation capacity erosion illustrates a cascading effect
within “One Health” frameworks, wherein antibiotics and other
microbiologically toxic pollutants diminish the gut microbiota-
driven transformation, thereby magnifying the adverse impacts
of other pollutants. Within this framework, understanding how
antibiotic and non-antibiotic pollutants alter the gut microbial
function is vital not only for elucidating the gut microbiota-
driven transformation to mixed pollutants but also for revealing
the bidirectional interplay between pollutants and the gut
microbiota.

Microbial mechanisms of transformation

One of the goals in gaining a mechanistic understanding of
microbial transformation is identifying and classifying the
functions of key microbes. We compiled information for 109
isolated gut microbes known to secrete core XME families:
hydrolases, oxidoreductases, transferases, and lyases (Fig.2;
Supplementary Table S8). Overall, the xenobiotic-metabolizing
microbes appeared to be dispersed across four major bacte-
rial phyla (Bacillota, Pseudomonadota, Actinomycetota, and
Bacteroidota). The phylum Bacillota was the most frequently
observed phylum of XME microbes in these datasets, consisting
of the genera Clostridium (25.4%), Eubacterium (14.5%), Lactobacillus
(9.1%), and Enterococcus (9.1%). Bifidobacterium (69.2%) is the
most common genus in the phylum Actinomycetota and is
characterized by the activities of azo reductase, nitro reductase,
B-glucuronidase, and arylsulfatase. The genera Bifidobacterium
(in Actinomycetota), Bacteroides (in Bacteroidota), Citrobacter (in
Pseudomonadota), Klebsiella (in Pseudomonadota), and Escherichia
(in Pseudomonadota) are also possible sources of additional
xenobiotic-metabolizing bacteria. E. coli, the gut species with
the highest XME activity, is capable of catalyzing the hydrolysis,
reduction, oxidation, and transfer reactions of xenobiotics [107,
134, 135]. However, the “bacteria-centric” perspective presented
herein reflects the current state of the literature rather than
disregarding the potential significance of other microbiota
components, and the roles of archaea, fungi, and viruses in
pollutant transformation should not be overlooked. For example,
the archaeal genus Methanobrevibacter represents a primary source
of cellulases in the gastrointestinal tract of ruminants [136,
137], whereas the human gut archaea such as Methanosphaera
stadtmanae and Methanobrevibacter smithii have demonstrated
methyltransferase activity toward arsenic (As) [58, 59].

Although the isolation method provides direct insights into
the gut strains involved in pollutant transformation, it clearly
overlooks those uncultured gut microbes and the microbial
interactions. In a previous study of XMEs in human gut microbiota
(397 gut metagenomes) using metagenomic approaches, 850
bacterial genera were found to encode at least one XME (including
CYP, monoamine oxidase, epoxide hydrolase, alcohol and
aldehyde dehydrogenase, thiopurine methyltransferase, N-acetyl
transferase, and glutathione S-transferase) [136]. In many cases,
the diversity of the gut microbiota leads to a greater variety of

microbial enzymes, and the combination of synergistic, beneficial,
and antagonistic interactions among members of the gut
microbiota may have a significant effect on the microbial trans-
formation of pollutants in the digestive system [137]. Horizontal
gene transfer events among the gut microbiota can also expand
their substrate utilization range, enhance fermentation capacity,
and provide new electron transfer pathways, thereby improving
adaptation to anaerobic environments and increasing pollutant
transformation efficiency [138-140]. Metagenomics has enabled
the discovery of previously unrecognized enzymes, reactions,
and organism-specific pathways by systematically expanding the
catalog of xenobiotic-metabolizing pathways beyond culturable
species [133]. Therefore, this approach is preferable for clarifying
the diverse genes and pathways expressed by poorly represented
microbes, the interactions of transformation-associated microbes
with other microbes, and their adaptive evolution to pollutants
on the basis of microbial co-occurrence in future studies.

Host effects on the microbial transformation

The gut morphology, physiology, and function exert a combined
influence on the colonization of the gut microbiota (Box 2), which
reflects adaptations to ecological niches and environmental con-
ditions (e.g. pH, lumen flux, and peristalsis). There is little micro-
bial colonization in the stomach due to the extremely acidic
environment (pH 1.5), whereas the density of the gut microbiota
increases significantly in the distal small intestine (also known
as the ileum) and colon [5, 141]. Another gradient of microbial
distribution can be found along the tissue-lumen axis, wherein
few bacteria adhere to the tissue or mucus but many bacteria
are found in the lumen [142, 143]. Physiological characteristics of
the host’s digestive system are also important determinants of
the pollutant retention time and their opportunities in contact
with the gut microbiota. The slow dietary transport and abun-
dant microbial colonization make the distal intestine an ideal
site for pollutant transformation [5, 144, 145]. For example, the
extended digesta retention time in ruminants also allows for
more extensive microbial transformation of complex and persis-
tent pollutants [146]. In addition, vertebrate microbial stability
enables predictable pollutant transformation efficiency, whereas
the structural simplicity and environmental sensitivity of inver-
tebrate guts may lead to high variability in transformation path-
ways and outcomes across individuals [147].

The composition and activity of the gut microbiota are
influenced by a combination of various internal factors (such
as the host’s sex, lifestyle, and genetic characteristics) and
external factors (such as diet) [30, 37, 38]. Thus, the physiological
functions and lifestyle habits of the host inevitably affect the
gut microbial community and enzyme activity. In a recent
large-scale metagenome analysis, community similarity across
hosts was determined basis of the initial inoculum and niche-
specific factors such as the oxygen level, temperature, pH,
and organic carbon availability rather than the phylogenetic
relatedness of the hosts [30]. Taking digestive enzymes as
an example, there are visible differences in the composition
of gut microbes with digestive enzyme activity across host
species from humans, mammals, birds, amphibians, and fish
to invertebrates (Supplementary Table S9). The activity levels
of lipases, proteases, and trypsases in the gut microbiota of
carnivorous animals are much higher than those in herbivorous
species [161]. In omnivorous animals, the microbiome in the
gut tract mainly consists of protein-hydrolyzing bacteria and
starch-, lipid-, and cellulose-decomposing bacteria [161]. Feeding
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Figure 2. Phylogenetic tree showing the isolated gut bacterial strains with xenobiotic-metabolizing enzyme (XME) activities. The phylogenetic
relationships among the reported bacterial strains were extracted from the National Center for Biotechnology Information (NCBI) taxonomic database
classification system. The data points plotted outside the tree represent the xenobiotic metabolism ability of each species.

ruminants a starch-free diet allows the gut microbiota to require
almost no intestinal amylase to function but results in the
presence of a series of cellulose degraders in the rumen [162].
Moreover, amylase activity in the digestive tract of omnivorous
fishes is generally greater than that in the digestive tract of
carnivorous fishes [163]. Previous research revealed differences in
the metabolism of both endogenous and xenobiotic substances
in the enriched gut microbiota of six marine species caused by
differences in their feeding habitats [113, 164]. Therefore, the
understanding of the effects of the host’s physiological signatures
and feeding habits on the gut microbiota must be further
improved to account for variations in the microbiota in response
to pollutants, especially in comparisons across species. Such
interspecific differences in gut anatomy and microbial function
underscore the importance of considering host-specific gut
models when predicting the biotransformation and toxicological
consequences of pollutants.

Calling for novel methodologies for
elucidating gut microbiota-driven
transformation

Although significant advances in recent years have paved the
way for a more comprehensive toxicological perspective of gut
microbiota-driven pollutant transformation, the major challenge
is that the existing methodologies may no longer be adequate
for gaining mechanistic insights into the transformation process
under complex “pollutant-gut microbiota-host” interactions

(Fig. 3).

Developing prediction tools for the gut
microbiota-driven transformation of pollutants
Given the impracticality of experimentally investigating the
gut microbial transformation of every environmental pollutant,
computational prediction of transformation potential, scope, and
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Box 2. Distribution characteristics of the microbiota in the gut systems of humans and other animals.

Vertebrates

(Human, other mammals, birds and fish)

»Chemical environment:

(Human data for example)

Invertebrates

»Chemical environment:

Semi-oxic environment  Anoxic environment Anoxic environment + Semi-oxic or anoxic
- o environments (closely related
pH 1.5-3.0 pH6.0-8.0 pH5.5-7.0 ; to the habitat);
. B + Less pH variation.
> Microbial characters:
10-10° celllg 107 celllg 10"2 celllg > Microbial characters:
; . : " + Simpler community structure;
Aerobes, micro-aerobes  Obligate or facultative Facultative anaerobes '; b « More individual variation:

and facultative anaerobes anaerobes

Stomach and esophagus Small intestine

More susceptible.

Large intestine

Intestinal morphology and relative length

Human Bovine

20cm. Cookivorous ~ 20¢m

Herbivorous

Domestic chicken Wild fish
‘ -
% =1 Carnivorous

Relative length
Total length | = 3

2cm Omnivorous Herbivorous

Spatial heterogeneity of both chemical conditions and microbial signatures varies along the digestive tract [148]. In humans, the mucosal surface area
of the gastrointestinal (GI) tract is ~ 200-300 m?, harboring various microbes, including 1013-10%* cells of 400 different microbial species and
subspecies [149]. Anaerobic bacteria are the main components of the stable intestinal microbiota, and their numbers are 100 to 1000 times higher than
those of aerobic bacteria and facultative anaerobes [150]. The general ranking for bacterial number in human tissues from high to low is as follows:
large intestine > small intestine > duodenum and stomach [5, 141]. In addition, the core gut microbes across vertebrate species are relatively stable
including bacterial phyla of Actinomycetota, Bacillota, Bacteroidota, Pseudomonadota, Fibrobacterota, Fusobacteriota, and Verrucomicrobiota, and
other microbes of fungi, archaea, protozoa, and viruses [151, 152], while > 98% of isolated genetic sequences present in the gut come from bacteria in
vertebrates [38, 153]. In invertebrates, the tube-like gut provides a semi-oxic or anoxic environment with stable moisture conditions and nutrient pools
from the foregut to the hindgut, which facilitates colonization through facultatively anaerobic bacteria [44]. In contrast, the simple invertebrate
digestive system induces environmentally susceptible gut microbiota with high interindividual variability and no consistent core microbiome [44].

All vertebrates, including fish, mammals, and humans, have relatively complex but different gut systems [154-156], which equipping them with
distinct digestive capacities (the comparative gut structures illustrated were redrawn based on anatomical data from the cited literatures). The
average total intestinal transit time for healthy adults is 70 h (in the range of 23-168 h), with a majority (~80%) of the time spent in the large intestine
(colon) rather than other sections [5, 144, 145]. Ruminant mammals (e.g. bovine) have developed a downstream stomach or hindgut, thereby extending
the digesta retention time in the hindgut by as long as 96 h [157]. In fish, the gut evacuation time measured in situ generally ranges from 6 to 86 h

[158-160], with herbivorous species exhibiting extended digestion periods.

specificity is essential. Reaction mining and machine learning
approaches have led to tools such as BioTransformer [165], Drug-
Bug [166], and GutBug [167], which predict potential microbial
biotransformation pathways and enzyme classes (EC numbers)
based on chemical structure. However, reliable prediction remains
challenging due to the complexity and dynamic nature of the gut
microbiome and the scarcity of high-quality training data across
diverse conditions. Advances in high-throughput technologies are
aiding the development of better-curated databases. For example,
integrated genetic and metabolomic analyses have been used to
identify gut microbes and enzymes involved in drug metabolism
[3], whereas microbiome-derived metabolic screening combines
culturing, metagenomics, and transformation assays to link genes
to functions [4]. Although not specifically designed for gut pol-
lutant transformation studies, numerous databases containing
biological and chemical information can be leveraged to develop
accurate predictive models through integration or as foundational

resources, such as the metabolism pathway databases (e.g. KEGG,
MetaCyc, and Reactome), enzyme-specific databases (e.g. CAZy,
Pfam, and UniProt), chemical-enzyme interaction databases
(e.g. ChEMBL), and protein-protein interaction databases (e.g.
STRING). Especially, genomic context prediction methods (i.e.
gene co-occurrence, co-expression profiles, and genomic neigh-
borhood) as implemented in tools such as STRING can provide
a powerful “guilt-by-association” approach for hypothesizing
novel pathway components in non-model organisms [168].
Artificial intelligence and the subdomains machine learning and
natural language processing, which integrate pathways, enzymes,
metabolites, and kinetics from many biotransformation studies,
are recommended for chemoinformatic and bioinformatic anal-
yses. This could enable more precise tools to quickly screen for
pollutant candidates prone to microbial transformation, which
will support more finely targeted mining and the mechanistic
analysis of associations between enzymes and specific reactions.
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Constructing advanced experimental models and
selection guidelines for gut microbiota-driven
transformation of pollutants

Current experimental models for studying gut microbiota-driven
pollutant transformation include both in vitro and in vivo systems,
each with distinct advantages and limitations in replicating the
gut physiology and microbial complexity. In vitro models, such
as batch cultures with fecal samples [169], are accessible and
ethically advantageous but are limited by the poor culturability
of many gut species [170-172]. Continuous culture simulators
(e.g. SHIME [59, 62, 89], the simulation of the mammal intestinal
microbial ecosystem [173], and the fish digestion model [158]) can
better mimic intestinal conditions and enable direct observation

of microbial metabolism, but they still struggle to fully replicate
critical gut features such as pH, redox potential, and microbial
diversity. In vivo gut microbiota manipulation models, including
germ-free (GF) animals, antibiotic-treated models, and fecal
microbiota transplantation (FMT) models, can provide direct
functional insights but face translational and practical challenges
[5, 174, 175]. GF rodents are relatively ideal models but still exhibit
anatomical and metabolic abnormalities and limited human
extrapolation [5]. They also require stringent maintenance and
exhibit morphological and functional abnormalities such as
significant cecal enlargement and reduced absorption efficiency
[5]. Among aquatic species, only GF zebrafish at the larval stage
are available and widely used as a model for gut microbiome
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research [99, 158]. In addition, the FMT model is applicable
only for studying specific bacteria upon successful colonization.
To enhance reproducibility and biological relevance, future
efforts should focus on developing multi-species gnotobiotic
models, humanized microbiota mouse models, and integrated
systems that combine in vitro realism with in vivo validity. Novel
technologies such as intestinal organoids, 3D cell cultures, or gut-
on-a-chip systems offer more accurate biological replication [176],
enabling simulation of host responses and supporting reliable
in vitro-in vivo extrapolation. There is also a growing need to
develop standardized selection guidelines that consider research
objectives, pollutant properties, and the microbial ecological
context to facilitate model comparison and data integration.

Integrating technologies for the description and
tracing of transformation mechanisms

Elucidating the complex interactions among microbial consortia
and host cells during gut-driven pollutant transformation
requires interdisciplinary strategies integrating microbiology,
analytical chemistry, omics technologies, and computational
biology. This requires interdisciplinary approaches that combine
molecular biology, analytical chemistry, laboratory experiments,
and data science [177]. Microbiological techniques, such as
conventional culture, single-cell sequencing, metabarcoding,
metagenomics, transcriptomics, proteomics, metabolomics, and
their combinations, are essential for studying composition and
function of the gut microbiota [19, 175]. The study of the
enzymes and metabolic pathways of known gut microbes can
also provide clues to support microbiome discoveries. Integrating
multiomics data provides genetic insights into transformation
enzymes, while combining omics with microbial metabolic
network analysis helps clarify microbial relationships during
metabolism.

Although advanced chemical analysis can detect trace levels
of gut metabolites, host-microbe-metabolite interactions remain
difficult to characterize. Stable isotopes (e.g. 3C, N, and 20)
help trace low-level or cometabolic activities. The preferential
breakage of bonds for light isotopes and heavy isotopes (**C)
results in a gradual increase in the enrichment of heavy isotopes
in the parent compound compared with the metabolites [178].
Compound-specific isotope analysis examines isotope ratios to
identify unique biotransformation pathways and fractionation-
causing reactions [179], thereby distinguishing pollutant transfor-
mation from host-microbe interactions. Stable isotope-assisted
metabolomics (SIAM) enables sensitive, untargeted detection of
isotope-labelled pollutant metabolites, enhancing high-resolution
mass spectrometry for unknown metabolite characterization
[180, 181]. SIAM can be used to track isotopic labels globally
without preconceptions about pollutant fate [182]. Stable
isotopes can also link transformation activities with specific
microbial populations and assimilation mechanisms. Stable
isotope probing (SIP) methods, including DNA-SIP, metagenomic-
SIP, transcriptome-SIP, protein-SIP, and single-cell SIP, provide
sequence and functional data on potential transformation
agents by monitoring labelled atom incorporation into nucleic
acids [183, 184]. Time-dependent *C-metabolite flux analysis
(**C-MFA) traces isotopic ratios in key metabolic pathways,
revealing gut transformation processes [185]. For example, *C-
MFA successfully elucidated the microbial fermentation of *C-
labelled carbon nanomaterials in mice [87], demonstrating
its ability to uncover in situ gut symbiotic metabolism. These
integrative, isotope-enabled approaches allow mechanistic
exploration of pollutant transformation at the molecular, cellular,

and ecosystem levels, offering a powerful framework for future
gut microbiome research.

Advancing toxicological assessment approaches
for gut microbiota-driven pollutant
transformation

Despite early hints of its pollutant-transforming role, the gut
microbiota’s direct toxicity-related interactions with pollutants,
drugs, and xenobiotics may represent just the tip of the
iceberg [28, 186]. Beyond these direct impacts (e.g. “first-pass
metabolism” and “enterohepatic circulation”), two key non-
transformation mechanisms also influence pollutant bioavail-
ability: (i) changes in bioavailability (e.g. gut mucosal barrier
alterations or microbiota-mediated pollutant adsorption) [187]
and (ii) interference with the host’s detoxification mechanisms
[5, 188]. For instance, gut microbes can alter pollutant absorption
by affecting mucosal integrity or through direct adsorption. Lacti-
plantibacillus plantarum can reduce PAH uptake via surface binding
[189], while some certain bacteria can deplete pharmaceuticals
through bioaccumulation without structural modification [190].
Comparative studies in germ-free versus colonized animals
have further revealed microbiota-induced changes in host gene
expression related to xenobiotic metabolism in the gut and liver
[191, 192], highlighting the microbiome’s systemic influence on
toxicological responses.

Toxicological assessments must be integrated into gut micro-
biota transformation studies. For example, product identification
coupled with toxicity assessments (i.e. effect-directed analysis
and toxicity identification evaluation) can reveal key mechanisms
in in vitro gut microbiota models. In silico tools such as quantitative
structure-activity relationships, quantitative cationic-activity
relationships, quantitative structure-nanotoxicity relationships,
and structural can be employed to predict the toxicity of gut
metabolites. In addition, the application of a physiologically based
toxicokinetic (PBTK) model incorporating gut microbial transfor-
mation can clarify associations between the microbiota and in
vivo pollutant toxicokinetics. PBTK models can be developed for
GF or antibiotic-treated animal comparisons to describe both
microbiota- and host-driven transformation processes [29]. These
approaches facilitate the elucidation of the microbially mediated
toxicological effects of pollutants by providing a quantitative
framework for understanding the role of the microbiota in
pollutant toxicokinetics. Given the tremendous progress in
biochemistry, microbiology, and toxicology, a comprehensive
interdisciplinary methodological framework for the more in-
depth exploration of the role of the gut microbiota in toxicology
is urgently needed.

Conclusions and prospects for progress

The transformation of environmental pollutants by the gut
microbiota greatly impacts the effects of exposure to and the
toxicology of these pollutants in humans and animals. This review
summarizes the emerging understanding of the contributions
of the gut microbiota to pollutant transformation, covering a
wide range of host species and chemical classes. The main
transformation reactions that can be driven by the gut microbiota
include reduction, hydrolysis, functional group removal, and
oxidation. These reactions are connected to the metabolic
enzymes that have developed in the gut microbiota, allowing
them to directly transform specific pollutants and regulate
their MOA and ADME properties in the host. In addition, this
review provides an overview of existing methodologies and future
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Research Priorities in Gut Microbiota-driven Pollutant Transformation
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Figure 4. Key goals for investigating gut microbiota-driven transformation and multidisciplinary research in light of “pollutant-gut microbiota-host”

interactions.

development directions to systematically elucidate gut microbiota-
driven transformation and its toxicological consequences.
The key to the successful investigation of gut microbiota-
mediated transformation is to efficiently combine transformation
consequences with microbial and compound-specific features,
which requires highly multidisciplinary research dedicated to J
elucidating “pollutant-gut microbiota-host” interactions (Fig. 4).
In the opinion of this research group, the following key issues

should be addressed in the future:

e Pollutant transformation by gut microbial communities
involves both dose effects and mixture effects. Future

studies should clearly identify the long-term toxic effects
and threshold concentrations for specific compounds and
the co-metabolism of complex pollutant mixtures in the
assessment of the effects of the host and gut microbiota
on environmental pollutants in the real world.
Owing to the complex structure of gut microbial com-
munities, future studies should systematically explore the
functional implications of bacteria and enzymes involved in
transformation processes, the mechanistic characterization
of interactions among bacteria, and the influence of
ecosystem-wide changes in the microbiome on transforma-
tion outcomes.
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¢ Considering that pollutant transformation can be recognized
as a combined host-microbiota process, a systems biology
view of host-microbiota interactions should be established
for pollutant transformation mechanisms, including micro-
bial modulation, enzymatic cooperation, and metabolomic
interactions.

Recognizing the gut microbiota’s pivotal role as a universal
modifier of pollutant exposure underscores the need to inte-
grate “pollutant-gut microbiota-host” interactions into the“One
Planet, One Health” concept. However, gut microbiota-driven
transformation remains an underexplored research frontier
and is often overlooked due to its inherent complexity and
interdisciplinary nature. First, insights into gut microbiota-
mediated pollutant transformations have led to advancements
in chemical design, pollutant management, risk assessment,
and toxicology. Beyond this, characterizing population-specific
microbial metabolic functions could significantly enhance
environmental health research, drug development, precision
medicine, and other transdisciplinary fields aligned with the
“One Planet, One Health” notion. Ultimately, given the potential
relationships between healthy host microbiota relationships at
the micro level and ecosystem health and homeostasis at the
macro level, understanding gut microbial transformation holds
promise as a path for ecological research on ecosystem changes
and biodiversity loss across all ecosystems on Earth in the context
of the Anthropocene.
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